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Abstract

This paper examines optimal financial flexibility for firms under financing constraints and non-

exclusive lending. We develop a model in which a borrower requires funding for an initial

investment and seeks additional financing later following a privately observed liquidity shock.

Non-exclusivity creates incentives to dilute initial debt, leading to excessive total borrowing.

The optimal contract is an endogenous debt limit: firms with mild shocks retain flexibility but

over-borrow (relative to second-best), while those with severe shocks face binding constraints

and under-borrow. This limit optimally trades off debt dilution against liquidity needs.
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High yield covenants always seek to strike a delicate balance . . .On the one hand, the

covenants provide protection for high yield investors against an issuer’s overextending

itself or unwisely using cash . . .On the other hand, the covenants must provide flexibility

for the issuer to operate its business and grow . . . In other words, the covenants protect

the investors’ ability to be paid principal and interest . . . while preserving the issuer’s

ability to run its business and grow without undue restrictions. (Simpson Thacher &

Bartlett LLP, 2022)

1 Introduction

Financial flexibility refers to a firm’s ability to raise financing when needed. It plays a central

role in corporate finance because it provides discretion over the timing and amount of borrowing.

This discretion is particularly valuable when firms face difficulties in credibly communicating their

financing needs to external financiers, such as creditors. In such situations, pre-arranged financial

flexibility acts as a safeguard, enabling firms to maintain access to funding.

While valuable, excessive financial flexibility can be harmful to the firm value. For instance,

firms with free cash flows may undertake negative-NPV investments (Jensen, 1986). A recent

literature in dynamic capital structure argues that excessive flexibility has another cost: it induces

firms to persistently increase leverage despite being suboptimal, thereby eroding the value from

borrowing (Admati et al., 2018; DeMarzo and He, 2016). This problem occurs because the borrower

fails to internalize how additional borrowing dilutes existing creditors’ claims.

This paper studies optimal financial flexibility for firms that borrow from multiple lenders (non-

exclusive lending). Financial flexibility is desirable because it allows firms to meet future liquidity

needs. However, firms face a financing constraint: they must take on initial debt to fund upfront

investments. This creates incentives to subsequently dilute the initial debt under financial flexibility,

leading to over-borrowing. We show that the optimal contract imposes an endogenous borrowing

limit that balances future liquidity needs against dilution incentives, even though this sometimes

results in under-borrowing.

More specifically, we develop a model in which, at the initial date, a penniless borrower needs

to borrow a fixed amount to finance an investment project. The project generates cash flows at the

final date contingent on the borrower’s effort, with more debt reducing the borrower’s incentive to

exert effort. At the interim date, the borrower experiences a liquidity shock, which incentivizes her

to borrow further. The second-best solution serves as our benchmark, where liquidity shocks are

contractible, and the only friction is moral hazard in effort choice. We focus on the case where the

liquidity shock realization is the borrower’s private information and she can borrow again afterward.
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Crucially, this subsequent borrowing is non-exclusive: the borrower is not obligated to return to

initial lenders. This non-exclusivity creates over-borrowing incentives and calls for restrictions on

financial flexibility.

The need for upfront borrowing requires the borrower to take on initial debt, while the liquidity

shock creates incentives for additional borrowing at the interim date. Initial lenders, anticipating

potential dilution from additional borrowing, naturally benefit from protections that restrict total

debt. However, these restrictions can be costly when the liquidity shock is severe. We show that our

problem resembles a delegation problem between a principal and an agent, where the mechanism

does not allow for transfers. In this context, the principal is the borrower at the initial date, and

the agent is the same borrower at the interim date after experiencing a liquidity shock. While

the principal maximizes total firm value, the agent (with private information about the shock)

maximizes the continuation value at the interim date, which is the firm value net of initial debt.

Unlike standard delegation problems where conflict is derived from present bias, in our setting, it

occurs due to the pre-existing initial debt. As Admati et al. (2018) show, this legacy debt creates

a “leverage ratchet” effect where firms persistently increase leverage despite this being suboptimal.

Building on the delegation literature, we show that the optimal contract between the borrower

and initial lenders includes an endogenous total debt limit. The borrower may raise additional

financing at the interim date, but total debt cannot exceed a pre-specified cap. This debt limit

represents what we term financial flexibility. When the liquidity shock is mild, borrowing needs are

modest and the debt limit turns out slack. The firm borrows as if under full flexibility. When the

shock is severe, however, the borrower would prefer to raise more debt than the cap permits. The

limit binds, which restricts the firm’s access to funds. The endogenous level of the debt limit is set

at the initial date to balance the value of interim liquidity provision against the need to prevent

excessive borrowing and creditor dilution.

Why does the optimal contract include an endogenous debt limit? Since the liquidity shock

is the borrower’s private information, the optimal contract must provide incentives for truthful

reporting. This requires that whenever the debt limit does not bind, the borrower can borrow

exactly the amount she would choose under full flexibility. When the debt limit binds, however,

the borrower cannot benefit from misreporting her liquidity shock. Under this policy, deviations in

reported liquidity shock do not increase borrowing capacity because the same debt limit applies to

all borrower types. This mechanism–where the borrower either receives her unconstrained optimum

or faces a locally flat allocation–follows standard results from optimal delegation theory.

We show that the financing constraint always binds: the borrower raises exactly the amount

needed for the initial investment and no more. This occurs because more initial borrowing comes

with more debt taken at the initial date. However, due to the dilution incentives, more initial
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debt must be accompanied by reduced financial flexibility, i.e., a tighter debt limit, which is costly.

Therefore, the borrower never raises more than necessary at the initial date. By contrast, the

financing constraint might be slack under exclusive lending, where firms must return to the initial

lender for additional financing. This occurs when the initial investment is relatively small. In such

cases, private information about liquidity shocks introduces no distortion relative to the second-best

allocation.

Both over- and under-borrowing exist under the optimal contract. Borrowers who face severe

liquidity shocks are constrained by the debt limit and under-borrow relative to the second-best

benchmark. By contrast, borrowers experiencing mild shocks raise more debt than the second-

best benchmark, resulting over-borrowing. The endogenous debt limit is set to balance this over-

borrowing and under-borrowing.

We show the optimal contract can be implemented using a simple and commonly observed

financial arrangement: an initial debt issuance paired with a covenant that limits total leverage.

Such covenants are widespread in practice and, as the quotes at the beginning of the introduction

illustrate, serve precisely the role highlighted in our analysis. They prevent excessive future bor-

rowing that could dilute existing creditors. Our framework thus provides a theoretical foundation

for understanding why these covenants are prevalent.

Related Literature

Our paper is closely related to a strand of the mechanism design literature on commitment and

flexibility (Halac and Yared, 2022, 2014; Amador et al., 2006; Amador and Bagwell, 2013). There

are two main differences. First, motivated by the corporate financing settings, we incorporate both

an initial financing constraint (requiring the borrower to raise a specific amount at t = 0) and an

interim wealth constraint. We show these constraints generate important results. Second, while the

time inconsistency problem in these papers comes from present bias, in our framework, it occurs

because the borrower ignores the impact of her decisions on the value of old debt once it has been

issued. This creates a disagreement between the principal’s and the agent’s objective function.

The principal – the borrower before the initial debt has been issued – aims to maximize firm value,

whereas the agent – the borrower after the initial debt has been issued – aims to maximize the

firm value net of the initial debt. On the technical side, our solution involves a two-dimensional

maximization problem: an initial debt level and a debt limit function, and the problem is not

jointly convex. We manage to circumvent this by solving the problem sequentially.

Our work also connects to the finance literature on financial flexibility (Gamba and Triantis,

2008), though with different modeling primitives. These models emphasize cash hoarding for in-

vestment opportunities, whereas our paper introduces private information and focuses instead on
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flexibility in future leverage. The paper is also related to the theoretical models on debt covenants

(Aghion and Bolton, 1992), but the methodology (mechanism design v.s. incomplete contract)

differs fundamentally.

2 Model Setup

2.1 Borrower, Investment, and Liquidity Shock

There are three dates, t = 0, 1, 2, and a risk-neutral borrower. The borrower has a project that

requires a fixed investment of I at t = 0 but has no resources to finance it, hence the need to

borrow. The project generates no cash flow at t = 1 and a final cash flow Y at t = 2 if successful

(zero otherwise). At the beginning of t = 2, the borrower privately chooses an effort level q ∈ [0, 1],

where q is also the success probability. The effort incurs a private cost c(q). We assume that

c(0) = 0 and that c(q) is strictly increasing, strictly convex, and twice continuously differentiable.

Moreover, we assume c′(1) > Y to guarantee interior solutions for q.

The borrower does not discount cash flows between t = 0 and t = 1. At t = 1, she receives

a liquidity shock and discounts the cash flows at t = 2 at θ. The realization of θ is her private

information. We assume that θ is drawn from a set Θ = [
¯
θ, θ̄] ⊆ (0, 1], with a continuously

differentiable density function g(θ) > 0 and cumulative density function G(θ). Throughout the

paper, we make the following standard assumption, which leads to a result that the likelihood ratio

g(θ)/G(θ) is decreasing.

Assumption 1. The cumulative density function G(θ) is log-concave.

2.2 Lenders and Contract

There exists a competitive pool of dispersed lenders. Throughout the paper, lenders are risk-

neutral and do not discount the future. Under competition, the borrower captures all surplus from

lending.

The focus of this paper is to study the optimal lending contract, under which at t = 0, lenders

make an initial transfer τ0 to the borrower to cover the initial investment I. At t = 1, the borrower

receives another interim transfer τ1(θ̂) at t = 1 contingent on the reported liquidity shock θ̂. If

the project succeeds at t = 2, she will make a state-contingent payment x1(θ̂). As a matter of

terminology, we will interpret the repayment at t = 2 as a debt contract and refer to x1 as the face

value of debt. For a given shock realization θ, report θ̂, and effort q, the borrower’s payoff is

τ0 − I + τ1(θ̂) + θ
[
q
(
Y − x1(θ̂)

)
− c(q)

]
.
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Since the borrower has no initial wealth and is protected by limited liability, the contract must

satisfy the following constraints:

τ0 ≥ I, τ1(θ̂) ≥ 0, x1(θ̂) ∈ [0, Y ]. (1)

For the rest of the paper, we sometimes refer to the constraint τ0 ≥ I as the financing constraint.

Note that the borrower seeks financing on two dates: an initial investment I at t = 0 and an

additional transfer τ1 at t = 1 due to the liquidity shock. In most parts of the paper, we focus on

the case where initial lenders at t = 0 are separate from the new lenders at t = 1. This separation

occurs naturally when lenders are dispersed because finding the same group of initial lenders at

t = 1 can be difficult. Even if the initial lenders are concentrated (e.g., a bank), regulatory capital

constraints may restrict their exposure to a particular sector or borrower, preventing them from

providing additional funding at t = 1. We explicitly distinguish between debt issued to initial

lenders (x0) and those issued to new lenders (x1 − x0).

Figure 1 summarizes the sequence of events on three dates.

t = 0 t = 1 t = 2

- Borrower borrows from ini-
tial lenders. Investment is
made.

- Liquidity shock is realized
- Borrower borrows from new
lenders

- Cash flows are realized.
Payments are settled.

Figure 1: Timeline of events

2.3 Effort Choice and Valuations

The borrower’s choice of effort at t = 2 involves a standard moral hazard problem, which is

introduced so that leverage has a downside.1 Given a face value of debt x1, the borrower chooses

effort q to maximize her payoff

V2(x1) = max
q∈[0,1]

q(Y − x1)− c(q), (2)

where V2(x1) is the value of the borrower’s claim net the effort cost. Because there is no outsider

equity, θV2(x1) can be thought of as the firm’s insider equity value at t = 1. Let q(x1) be the optimal

1The solution without a moral hazard problem is trivial: the borrower always pledges all the cash flows at t = 0.
An alternative assumption is to introduce the bankruptcy cost.
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solution to this maximization problem. The following lemma summarizes some useful properties

satisfied by V2(x1) and q(x1).

Lemma 1. Suppose that, for each x1, q(x1) solves (2). Then

• ∀x1 ∈ [0, Y ], V2(x1) is decreasing and convex with derivative V ′
2(x1) = −q(x1).

• ∀x1 ∈ [0, Y ], q(x1) = (c′)−1(Y − x1).

• ∀x1 ∈ [0, Y ], q(x1) is decreasing with derivative q′(x1) = − 1
c′′(q(x1))

.

• If c(q) is three times continuously differentiable, then q′′(x1) = − c′′′(q(x1))
c′′(q(x1))

(
q′(x1)

)2
.

Throughout the paper, we make the following assumptions.

Assumption 2. The cost function c(q) satisfies

Imax ≡ max
x1∈[0,Y ]

x1q(x1) ≥ I. (3)

Assumption 3. c(q) is three times continuously differentiable and satisfies c′′′(q) ≥ 0.

Assumption 2 states that the maximum expected repayment x1q(x1) is sufficient to cover the

initial investment I. Assumption 3 and Lemma 1 imply that q(x1) is concave. This will guarantee

that the objective function of several of the programs we later consider is concave.

For the rest of this paper, we define

W1(x1, θ) ≡ x1q(x1) + θV2(x1), (4)

as the (ex-post) t = 1 firm value for a given θ. Let x∗1(θ) be the level of debt that maximizes the

firm value, i.e.,

x∗1(θ) = argmax
x1

W1(x1, θ). (5)

This solution corresponds to the second-best allocation: it maximizes total surplus when moral

hazard is the only friction, and no other constraints are present. This level of debt captures the

trade-off between providing liquidity and preserving the borrower’s incentives to exert effort. It will

be used as a baseline for comparison throughout the remainder of the paper. Because ∂2W1(x1,θ)
∂θ∂x1

< 0,

it is easily established that x∗1(θ) decreases with θ: under the second-best allocation, firms with

larger liquidity shocks should borrow a higher level of total debt.

This second-best allocation corresponds to the solution after knowing θ. If the borrower chooses

at t = 0 without knowing θ, the optimal choice is x∗1(E[θ]), because W1(x1, θ) is linear in θ. For the
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remainder of this paper, we sometimes refer to x∗1(E[θ]) as the optimal total debt without knowing

θ.

Linear Example. Throughout our analysis, we study a specific example where the cost function

c(q) is quadratic. Under this specification, the optimal effort q(x1) is linear in x1, and the borrower’s

payoff at t = 2 is quadratic. For the rest of this paper, we will refer to this case as the linear example.

Specifically, if c(q) = 1
2cq

2 where c > Y , then

q(x1) =
Y − x1

c

V2(x1) =
1

2

(Y − x1)
2

c
.

(6)

Assumption 2 is satisfied only if
Y 2

4c
≥ I.

Moreover, we have

W1(x1, θ) = x1
Y − x1

c
+

θ

2

(Y − x1)
2

c

x∗1(θ) =
1− θ

2− θ
Y.

2.4 Complete Information Solution

If θ is observable and contractible, the optimal long-term contract is designed to maximize

the borrower’s expected payoff, subject to the lender’s participation constraint, financing, and

feasibility constraints.

max
{τ0,τ1(θ),x1(θ)}

τ0 − I + E
[
τ1(θ) + θV2 (x1(θ))

]
subject to

E
[
x1(θ)q (x1(θ))− τ1(θ)

]
− τ0 ≥ 0

τ0 ≥ I, τ1(θ) ≥ 0, x1(θ) ∈ [0, Y ].

(7)

Clearly, the lender’s participation constraint is always binding, and it is without loss of generality

to set τ1(θ) = 0. We substitute the participation constraint in the objective function and formulate

Lagrangian. Let λ be the Lagrange multiplier of the financing constraint. Dividing the Lagrangian

8



by 1 + λ, the problem becomes

min
λ≥0

max
{x1(θ)}

E
[
W1 (x1(θ), θ)− λ

θ

1 + λ
V2 (x1(θ))

]
− I, (8)

Lemma 2 (Complete Information Benchmark). Let

Ic ≡ E
[
x∗1(θ)q (x

∗
1(θ))

]
.

When θ is observable and contractible, it is without loss of generality to set τ1(θ) = 0.

• If Ic ≥ I, the financing constraint is slack, and the optimal solution satisfies xc∗1 (θ) = x∗1(θ)

and τ0 = Ic.

• Otherwise, the solution is xc∗1 (θ) = x∗1 (δ
c∗θ) where δc∗ ≡ 1/(1 + λc∗) solves

E [x∗1 (δ
c∗θ) q (x∗1 (δ

c∗θ))] = I.

In this case, τ0 = I.

The term E[x∗1(θ)q(x∗1(θ))] measures the expected pledgeable income at t = 0 under the second-

best allocation. Lemma 2 presents two distinct cases based on whether this expected pledgeable

income covers the initial investment I. When this expected pledgeable income is sufficient, the

financing constraint is slack, and the second-best allocation is optimal. When insufficient, the fi-

nancing constraint binds, so the borrower must pledge more project income. Equation (8) shows

this scenario is equivalent to the second-best allocation where the borrower faces an effective liquid-

ity shock δc∗θ. Results show that the financing constraint, when binding, amplifies the borrower’s

liquidity shock so that a borrower with shock θ effectively behaves as if facing a larger shock δc∗θ.

As a result, it leads to excessive borrowing and total debt relative to the second-best solution.

Before concluding this subsection, we note that the results are equivalent under non-exclusive

lending. Depending on whether the financing constraint binds, the optimal contract specifies total

debt due at t = 2 as x∗1(θ) or x
∗
1(δ

c∗θ). Intuitively, if total debt can be contracted without incurring

incentive rents, there is no associated dilution.

Linear Example. It is easily derived that

E [x∗1 (δθ) q (x
∗
1 (δθ))] =

Y 2

c
E
[

1− δθ

(2− δθ)2

]
.
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If we further consider the special case of the uniform distribution: G(θ) =
θ−

¯
θ

θ̄−
¯
θ
, then

Y 2

c
E
[

1− δθ

(2− δθ)2

]
=

1

θ̄ −
¯
θ

Y 2

δc

[
1

2− δ
¯
θ
− 1

2− δθ̄
− log

(
2− δθ̄

2− δ
¯
θ

)]
.

The financing constraint is slack if

1

θ̄ −
¯
θ

Y 2

c

[
1

2−
¯
θ
− 1

2− θ̄
− log

(
2− θ̄

2−
¯
θ

)]
≥ I.

3 Benchmark: Single Lender Equilibrium

Before solving the model, we first analyze a benchmark case where the borrower can enter into

a long-term contract with a single lender. This corresponds to the case of exclusive lending. In this

case, there are no new lenders, and initial lenders receive a payoff

x1(θ)q (x1(θ))− τ1(θ)− τ0.

In addition to moral hazard, the remaining frictions are the financing constraint and the borrower’s

private information about her liquidity shock. We will analyze the impact of each of these frictions

separately.

3.1 Private Information

Next, we turn to the case where θ is private information. By the revelation principle, we can

restrict attention to direct revelation mechanisms {τ0, τ1(θ), x1(θ)}. The optimal mechanism can

be found by solving the problem in (7) with the additional truth-telling IC constraint

θ ∈ argmax
θ̂

τ1(θ̂) + θV2(x1(θ̂)). (9)

By the envelope theorem, we can rewrite (9) as

τ1(θ) + θV2 (x1(θ)) = τ1(θ̄) + θ̄V2(x1(θ̄))−
∫ θ̄

θ
V2(x1(θ̃))dθ̃, ∀θ ∈ Θ

x1(θ) is non-increasing.

(10)
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As in the problem under complete information, the lender’s t = 0 participation constraint must be

binding. Simple calculation shows that the initial financing constraint becomes 2

τ0 = E
[
W1(x1(θ), θ) +

G(θ)

g(θ)
V2 (x1(θ))

]
− τ1(θ̄)− θ̄V2(x1(θ̄)) ≥ I. (11)

Substituting τ0 and τ1(θ) into the objective function, the optimal contract solves3

max
{x1(θ),τ1(θ)≥0}

E [W1(x1(θ), θ)]− I

subject to (10) and (11)

(12)

We make the following assumption to ensure that the previous optimization problem is convex:

Assumption 4. For all θ ∈ Θ, the function

W1(x1, θ) +
G(θ)

g(θ)
V2(x1)

is concave in x1. Under Assumption 1, this holds if

2 +
x1q

′′(x1)

q′(x1)
≥ θ̄ +

1

g(θ̄)
.

Note that problem (12) differs from the standard mechanism design problem in that it has an

additional constraint τ1(θ) > 0. Lemma 3 in the appendix proves that τ1(θ) must be non-increasing,

which implies that we only need to evaluate the constraint at θ = θ̄. Due to the financing constraint,

it is costly to defer the borrowing from t = 0 to t = 1, so that the principal, in general, prefers

lower τ1(θ). This also implies τ1(θ̄) = 0 if the financing constraint is binding.4

We solve the problem in two steps. First, with some slight abuse of notation, let λ be the

Lagrange multiplier of the financing constraint τ0 ≥ I and δ ≡ 1/(1 + λ) be the shadow discount

2This involves the following simplification by changing the order of integration:∫ θ̄

¯
θ

∫ θ̄

θ

V2(x1(θ̃))g(θ)dθ =

∫ θ̄

¯
θ

∫ θ̃

¯
θ

V2(x1(θ̃))g(θ)dθdθ̃ =

∫ θ̄

¯
θ

V2(x1(θ̃))G(θ̃)dθ̃.

The problem also substitutes the envelope condition (10) in the participation constraint.
3The constraint x1(θ) ∈ [0, Y ] will always be slack and hence omitted.
4If the financing constraint is slack, the borrower is indifferent between borrowing at t = 0 and t = 1 due to no

discount between the two dates. As long as there is a slight preference for t = 0 borrowing, τ1(θ̄) = 0 would hold.
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factor. We find the optimal solution for a fixed value of δ:

max
{x1(θ)}

E
[
W1(x1(θ), θ) + (1− δ)

G(θ)

g(θ)
V2(x1(θ))

]
− (1− δ)θ̄V2(x1(θ̄))

subject to

x1(θ) is non-increasing

(13)

Note that the objective function in equation (13) differs from standard mechanism design problems

because it includes a final term involving θ̄. Therefore, we cannot apply the standard point-wise

maximization technique. To see this, let

xs1(θ) ≡ argmax
x1

{
W1(x1, θ) + (1− δ)

G(θ)

g(θ)
V2(x1)

}
(14)

be the point-wise maximum of (13). Note that xs1(θ) = x∗1(θ) when δ = 1. Moreover, under

Assumption 1, the objective function in (14) satisfies the single-crossing property, so that xs1(θ) is

non-increasing in θ. However, x1(θ̄) is chosen to maximize

W1(x1(θ̄), θ̄) + (1− δ)
G(θ̄)

g(θ̄)
V2(x1(θ̄))− (1− δ)θ̄V2(x1(θ̄)),

so that the point-wise maximum solution will lead to a solution where x1(θ) has an upward jump at

θ̄. Using the method from global theory of constrained optimization, we have the following result.

Proposition 1. Let xs∗1 (θ) be the solution to problem (13) for a given δ.

• If δ ≥
¯
θ/E[θ], the solution to problem (13) is xs∗1 (θ) = max{xs1(θ), xs1(θH)} where θH ∈ Θ

solves:∫ θ̄

θH

∂W1(x
s
1(θH), θ)

∂x1
dG(θ) + (1− δ)q (xs1(θH))

(
θHG(θH) +

∫ θ̄

θH

θdG(θ)

)
= 0. (15)

• If δ <
¯
θ/E[θ], xs∗1 (θ) = xp1, where xp1 solves

xp1q
′(xp1) + (1− δE[θ]) q(xp1) = 0.

The optimal transfers {τ0, τ1(θ)} satisfy (10) and (11).

Proposition 1 describes the optimal level of debt under different degrees of financing constraint.

When δ ≥
¯
θ/E[θ], the financing constraint is not too tight or may even be slack. In this case,
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the optimal debt level decreases with θ for lower values of θ (following xs1(θ)) and then remains

constant at xs1(θH) once θ exceeds the threshold θH . In contrast, when δ <
¯
θ/E[θ], the financing

constraint becomes very tight. In this case, the optimal debt level is a constant at xp1 across all

types θ. In both cases, the optimal debt could involve a flat region once θ gets sufficiently high.

Let us elaborate.

Borrowers with higher values of θ inherently need less debt. The incentive compatibility con-

straint then requires that the interim payment τ1 must also decrease for borrowers with higher θ.

This creates a natural downward-sloping pattern in both the debt level and interim transfers across

types. Given the financing constraint, the principal – the borrower at t = 0 – prefers to pledge

more of the future cash flows, which necessarily involves a lower τ1. Because τ1 decreases with

θ, this eventually causes higher types to hit the limited liability constraint τ1(θ) ≥ 0. Once this

constraint binds for types above θH , these borrowers cannot make any interim payment (τ1 = 0).

To maintain incentive compatibility when the limited liability constraint binds, the face value of

debt x1 must also remain constant for all types above θH .

We now proceed to the second step on the optimal solution.

Proposition 2. Let

Is ≡ E
[
W1 (x

∗
1(θ), θ) + V2 (x

∗
1(θ))

G(θ)

g(θ)

]
− θ̄V2

(
x∗1(θ̄)

)
,

where x∗1(θ) is defined in (5). Then,

• If I ≤ Is, the optimal policy is x∗1(θ).

• If I > Is, the optimal policy is xs∗1 (θ), where {θH , δs∗} jointly solve equations (15) and τ0 = I.

This proposition characterizes how the optimal solution depends on the investment size and,

hence, the financing needs. When the financing constraint is slack (which corresponds to I ≤
Is), the optimal solution is identical to the second-best allocation, i.e., the borrower’s private

information about θ does not introduce any additional distortion in the debt choice. This is

because, in the absence of financing constraints, there is no conflict between the principal and the

agent: both aim to maximize the firm value.

However, when the financing constraint binds (i.e., when I > Is), the truth-telling incentive

compatibility constraint introduces additional distortions. As shown by (14), the extent of this

distortion depends on δ, which captures the severity of the financing constraint. The solution then

is directly linked to the two cases in Proposition 1, where the face value of debt involves a flat

region.
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Linear Example. It is easily derived that

xs1(θ) = Y

1− θ − (1− δ)G(θ)
g(θ)

2− θ − (1− δ)G(θ)
g(θ)

 .

If G(θ) is log-concave, we have that Assumption 4 holds if

(2− θ̄)g(θ̄) ≥ 1.

Substituting in the envelope condition, we get that for θ ≤ θH the transfer to the borrower at t = 1

is

τ1(θ) =
Y 2

2c

 θH(
2− θH − (1− δ)G(θH)

g(θH)

)2 − θ(
2− θ − (1− δ)G(θ)

g(θ)

)2 −
∫ θH

θ

1(
2− θ̃ − (1− δ)G(θ̃)

g(θ̃)

)2dθ̃
 .

Moreover, we get

xP1 =
1− δE[θ]
2− δE[θ]

.

If we further assume that θ ∼ U [
¯
θ, θ̄], we get that

xs1(θ) = Y

[
1− 1

α− βθ

]
τ1(θ) =

Y 2

2c

[
θH

(α− βθH)2
− θ

(α− βθ)2
− θH − θ

(α− βθH)(α− βθ)

]
where α ≡ 2 + (1− δ)

¯
θ and β = 2− δ.

4 Multiple Lenders Equilibrium

We now solve the model under non-exclusive lending. In this setting, initial lenders anticipate

dilution from new debt issued at t = 1 and, therefore, seek to limit future issuance to protect

their claims. We consider the contract {τ0, x0, x1(θ̂)} offered to initial lenders, where total debt is

capped by x1(θ̂), a function of the borrower’s reported type θ̂ at t = 1. By doing so, we restrict the

mechanism to those where transfers cannot be made to the initial lenders and adjustments cannot

be applied to x0 conditional on the reported type θ̂ at t = 1. We examine such mechanisms later

in Section 5.

Since the borrower faces a liquidity shock, it is without loss of generality to assume she issues

14



new debt up to the debt limit x1(θ̂). Thus, ∆x1(θ̂) ≡ x1(θ̂) − x0 as the additional debt issued at

t = 1.

4.1 Reduction to Delegation Problem

We first show that the problem can be equivalently formulated as a delegation problem (Amador

et al., 2006; Amador and Bagwell, 2013). The participation constraint for new lenders bind, imply-

ing τ1 = (x1 − x0)q(x1), where x1 ≥ x0 is required to satisfy the non-negativity constraint τ1 ≥ 0.

At t = 1, the borrower’s continuation payoff for any given (θ, x1) is:

V1 (x1, x0, θ) = (x1 − x0)q(x1)︸ ︷︷ ︸
new debt issuance

+θV2(x1) = W1(x1, θ)− x0q(x1). (16)

The participation constraint for initial lenders also bind, implying

τ0 = x0E [q(x1(θ))] ,

and the financing constraint becomes

x0E [q(x1(θ))] ≥ I. (17)

Therefore, the borrower’s expected payoff at t = 0 is given by:

τ0 − I + E [V1(x1(θ), x0, θ)] = E [W1(x1, θ)]− I.

The borrower has incentives to report its type truthfully only if the following incentive compatibility

constraint is satisfied

θ ∈ argmax
θ̂∈Θ

V1(x1(θ̂), x0, θ).

By the envelope theorem, this can be rewritten as

V1(x1(θ), x0, θ) = V1(x1(θ̄), x0, θ̄)−
∫ θ̄

θ
V2(x1(θ̃))dθ̃ ∀θ ∈ Θ

x1(θ) is non-increasing.

(18)
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The optimal mechanism at t = 0 solves the following problem:

max
x0,x1(θ)≥x0

E
[
W1(x1, θ)

]
subject to (17) and (18).

(19)

This problem relates to a delegation setup, where the principal is the borrower at time t = 0, and

the agent is the borrower at time t = 1. The principal delegates the choice of total debt to the

agent, who has private information about the liquidity shock θ. The principal seeks to maximize

firm value (net investment I), while the agent maximizes V1(x1, x0, θ), which, as shown by equation

(16), is the firm value net of initial debt at t = 1. This conflict relates to the insight of Aguiar et al.

(2019), which shows that equilibrium debt issuance decisions can be characterized as the solution

to a planner’s problem that ignores the payoff to existing creditors.

Our problem differs in several aspects. First, it includes a financing constraint (17), which

arises naturally in corporate finance settings. This constraint is later shown to always bind, adding

both new insights and analytical complexity to the problem. Second, unlike Amador and Bagwell

(2013), where the time-inconsistency problem is driven by present bias, here it exists because the

agent disregards the debt issued at t = 0, a concern raised by Fama and Miller (1972) and Black

and Scholes (1973) and formalized by Admati et al. (2018). Specifically, note that

W1(x1, θ)− V1 (x1, x0, θ) = x0q(x1),

so the wedge between the principal’s and agent’s payoffs exactly equals the value of the initial debt.

The optimization problem in (19) is not necessarily jointly convex in x0 and x1(θ). Hence, we

analyze the problem in two steps. In subsection 4.2, we characterize the optimal debt at t = 1 for

an exogenously given x0. In subsection 4.3, we solve for the amount of initial debt x0 issued at

t = 0.

4.2 Constrained Debt Limits

Throughout this subsection, we take the initial debt level x0 as given. Let us define the value

function
W0(x0) = max

x1(θ)≥x0

E
[
W1(x1, θ)

]
subject to (17) and (18).

(20)
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Before proceeding, it is helpful to consider a local version of the incentive compatibility constraint,

which applies at any point θ where x1(θ) is differentiable.

∂V1 (x1(θ), x0, θ)

∂x1
· dx1(θ)

dθ
= 0. (21)

This condition implies that a necessary condition for truthful reporting is either: (i) the bor-

rower receives the unconstrained optimal debt level x1(θ) that maximizes her continuation payoff

V1(x1(θ̂), x0, θ), or (ii) the allowed debt level x1(θ) is locally insensitive to the type reported, so the

agent does not benefit from locally misreporting the liquidity shock. Regarding the first case, let

us define

xf1(θ, x0) = argmax
x1

V1(x1, x0, θ) (22)

as the optimal total debt under flexible debt issuance. For notational simplicity, we omit the

dependence on x0 and write xf1(θ) when no confusion arises. The first-order condition is:5

(xf1(θ)− x0)q
′(xf1(θ)) + (1− θ)q(xf1(θ)) = 0.

To simplify the exposition, we make the following assumption:

Assumption 5. θ̄ = 1.

Under Assumption 5, the most patient borrower does not issues any debt at t = 1, so xf1(θ̄) = x0.

This assumption eliminates the need to consider limits that constrain all types, reducing the cases

to analyze.6 Moreover, under this assumption, for any debt limit between x0 and xf1(¯
θ), there exists

a threshold type θL ∈ Θ such that xf1(θL) is exactly this limit. In equilibrium, some borrowers hit

the debt limit, allowing us to specify the limit equivalently as a threshold type θL.

We now solve (20) and establish conditions under which the optimal mechanism takes the

form of a debt limit xf1(θL) so that the borrower has total debt xL1 (θ) ≡ min{xf1(θ), x
f
1(θL)}. By

construction, this debt policy satisfies the local incentive compatibility conditions (21) and is also

globally incentive compatible (i.e., satisfies (18)). Figure 2 plots the debt policy (solid red line)

against the flexible debt level xf1(θ) (dashed red line) and the second-best solution x∗1(θ) (solid

green line). Several patterns emerge. First, xf1(θ) decreases with θ, so the debt limit binds at low

θ but becomes slack as θ rises. Second, xf1(θ) ≥ x∗1(θ), since the former maximizes the firm value

5The function V1(x1, x0, θ) is concave in x1 under Assumption 3.
6When θ̄ < 1, we would need to consider additional cases to allow for debt limits of the form 0 < xL

1 < xf
1 (θ̄).

This corresponds to the degenerated delegation sets in Amador et al. (2018). The analysis in the appendix considers
this more general case and allows for θ̄ < 1.
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net of initial debt, while the latter maximizes total firm value. As a result, the debt limit leads to

under-borrowing at low θ and over-borrowing at high θ.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

x 1
(

)

xL
1( )

x*
1( )

xf
1( )

Underborrowing

Overborrowing

Figure 2: Debt Limit and Second-Best Allocation. We assume that θ ∼ U [0.4, 1], Y = 1 and
c(q) = q2. For the purpose of illustration, we take x0 = 0.1 and θL = 0.8.

The optimal debt limit can thus be found by solving:

max
θL∈Θ

E
[
W1

(
xf1(θL), θ

)
1θ≤θL +W1

(
xf1(θ), θ

)
1θ>θL

]
subject to

x0E
[
q
(
min{xf1(θ), x

f
1(θL)})

)]
≥ I.

(23)

Again, we formulate Lagrangian. Let λ be the multiplier and define δ = 1
λ+1 . It is easily established

that E
[
q
(
min{xf1(θ), x

f
1(θL)})

)]
increases in θL. This means that we only need to consider two

candidates for the solution of problem (23): either (i) the constraint is slack, and θL is chosen

to maximize the objective function; or (ii) the constraint is binding and θL is determined by the

financing constraint. The following proposition characterizes the solution to problem (23).

Proposition 3 (Optimal Debt Limit). Let θbcL be the lowest type that satisfies the financing con-

straint:

θbcL ≡ min
{
θL ∈ Θ : x0E

[
q
(
xf1(θL)

)
1{θ≤θL} + q

(
xf1(θ)

)
1{θ>θL}

]
≥ I
}
.
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Let θucL be the optimal threshold in the absence of the financing constraint.

• If x0 > x∗1
(
E[θ]

)
, then θucL = θ̄ = 1.

• If x0 ≤ x∗1
(
E[θ]

)
, then θucL solves

x0 ·
q′
(
xf1(θL)

)
q
(
xf1(θL)

) + E[θL − θ | θ ≤ θL] = 0. (24)

The optimal threshold is θL = max
{
θucL , θbcL

}
, and the corresponding debt limit is xL1 = xf1(θL).

• If θucL > θbcL , the financing constraint is slack, and δ = 1.

• If θucL ≤ θbcL , the financing constraint binds, and δ = − x0

E[θbcL −θ|θ≤θbcL ]
· q′
(
xf
1 (θ

bc
L )
)

q
(
xf
1 (θ

bc
L )
) .
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bc
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Figure 3: Illustration feasible set for the debt limit problem (23). We assume that θ ∼ U [0.1, 1],
Y = 1 and c(q) = q2. The maximum pledgeable income is I = 0.6 × Imax where Imax =
maxx1∈[0,Y ] x1q(x1).

Figure 3 illustrates the set of (x0, θL) where the borrower can raise at least I at t = 0. The

shaded region is the feasible set, with lower boundary being θbcL . A minimum x0 exists below

which raising I is impossible. When x0 is low but above this minimum, increasing x0 decreases
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θbcL , effectively raising the debt limit at t = 1. This happens because to raise I, a higher x0 can be

accommodated with a lower success probability, which corresponds to a higher level of total debt.

As x0 increases further, the constraint becomes slack, because the maximum feasible debt exceeds

what even type
¯
θ would flexibly take. At very high x0, the pattern reverses: further increases

raise θbcL , effectively tightening the limit. This occurs because high x0 already creates severe moral

hazard in effort choice, reducing initial debt’s market value. To preserve this value, a tighter debt

is limit is needed so that the expected payment to initial lenders can be at least I. In later analysis,

the region where θbcL increases with x0 is never optimal in the borrower’s problem.

Meanwhile, the threshold θucL balances over- and under-borrowing when the financing constraint

is ignored. Without knowing θ, the optimal debt level is x∗1
(
E[θ]

)
at t = 0. If initial debt x0 exceeds

x∗1(E[θ]), there is already over-borrowing at t = 0, so θucL is chosen to impose the tightest possible

constraint to reduce over-borrowing. When x0 falls below x∗1
(
E[θ]

)
, θucL is determined by equation

(24), maximizing the objective in (23). As Figure 2 shows, such debt limit causes under-borrowing

when θ is low but over-borrowing when θ is high. The threshold θL minimizes the combined welfare

loss from both distortions.

According to Proposition 3, the optimal policy takes θL = max{θucL , θbcL }, acknowledging that

the threshold must be at least θbcL to satisfy the initial financing requirement. When θucL > θbcL ,

the financing constraint does not bind (λ = 0), whereas when θucL ≤ θbcL , the constraint binds and

generates a positive Lagrange multiplier reflecting the shadow cost of the financing requirement.

The next proposition identifies sufficient conditions under which the debt limit characterized

in the proposition solves the mechanism design problem (31). Our proof follows the Lagrangian

methodology employed by Amador et al. (2006) and Amador and Bagwell (2013).

Proposition 4 (Sufficient Conditions for Optimality). Consider the debt limit in Proposition 3.

Let δ = 1/(1 + λ) where λ be the Lagrange multiplier of the financing constraint in (23). If the

function function

δG(θ) +
x0q

′(xf1(θ))

q(xf1(θ))
g(θ) (25)

is non-decreasing for θ ∈ [θL, θ̄]. Then, xm∗
1 (θ) = min{xf1(θ), x

f
1(θL)} solves the mechanism design

problem (20).

Why is a debt limit optimal? The agent ignores how additional borrowing dilutes existing

debt x0, leading to over-borrowing. The principal naturally wants to impose discipline. Since the

liquidity shock is private information, the agent’s incentive compatibility constraint requires that

total debt either maximizes the agent’s continuation value or is locally flat in the reported type

(equation (21)). Condition (25) is a regularity condition that ensures this is also globally optimal.
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Linear Example. We have

V1(x1, x0, θ) = (x1 − x0)
Y − x1

c
+

θ

2

(Y − x1)
2

c

xf1(θ, x0) =
(1− θ)Y + x0

2− θ
.

The price at t = 1 given xf1(θ, x0) is

q(xf1(θ, x0)) =
Y − x0

c

1

2− θ
,

so

x0E
[
q
(
min{xf1(θ), x

f
1(θL)}

)]
=

x0(Y − x0)

c
E
[

1

2− θL
1{θ≤θL} +

1

2− θ
1{θ>θL}

]
.

The sufficient condition (25) in Proposition 4 is satisfied only if

(1− δ) + δ
Y

x0
> (2− θ)

g′(θ)

g(θ)
∀θ ∈ [θL, θ̄].

As x0 < Y , a sufficiency condition is that

sup
θ∈Θ

(2− θ)
g′(θ)

g(θ)
≤ 1

4.3 Initial Debt and Implementation

We now proceed to the second step and find the optimal value of x0 by solving the following

problem:

max
x0

W0(x0)

subject to

x0q(x0) ≥ I.

(26)

The constraint x0q(x0) ≥ I is both sufficient and necessary for the feasible set in problem (20) to

be non-empty. It is easily established that this constraint holds if and only if x0 ∈ [xmin
0 , xmax

0 ],

where xmin
0 < xmax

0 are the two roots to the equation x0q(x0) = I.7

Figure 4 illustrates the problem in (26). It builds on the left-hand boundary of the feasible set

shown in Figure 3 and adds the borrower’s indifference curves to represent her preferences, with

darker curves indicating higher payoff. For a given θL (and thus a fixed debt limit), increasing x0

7Assumption 2 guarantees the existence of the root. The fact x0q(x0) is concave in x0 implies that there are two
roots.
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Figure 4: Indifference curves and determination of optimal pair (x0, θL). We assume that θ ∼
U [0.1, 1], Y = 1 and c(q) = q2. The maximum pledgeable income is I = 0.6 × Imax where
Imax = maxx1∈[0,Y ] x1q(x1). W

m∗
0 corresponds to the value of the optimization problem in (26).

always lowers the borrower’s payoff. By contrast, for a given x0, the borrower’s payoff is maximized

when θL (and hence the debt limit) is neither too high nor too low. A high debt limit offers excessive

financial flexibility and leads to over-borrowing, whereas a low limit restricts flexibility and results

in under-borrowing.

The next proposition characterizes the optimal initial borrowing and its associated debt limit.

Proposition 5 (Necessary Conditions Initial Debt). Let xm∗
0 be a solution to (26), and xf1(θ

m∗
L )

the corresponding debt limit that solves (20).

1. If x∗1(E[θ]) ≤ xmin
0 there is no flexibility for additional financing at t = 1. In this case,

xm∗
0 = xmin

0 and θm∗
L = θ̄ = 1.

2. If x∗1(E[θ]) > xmin
0 there is flexibility for additional financing at t = 1. In this case, θm∗

L <
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θ̄ = 1 and xm∗
0 > xmin

0 . Specifically, {xm∗
0 , θm∗

L } jointly solve

xm∗
0 E

[
q(xf1(θ

m∗
L , xm∗

0 ))1{θ≤θm∗
L } + q(xf1(θ, x

m∗
0 ))1{θ>θm∗

L }

]
= I

xm∗
0 =

(1− δ)E
[
q(xf1(θ

m∗
L , xm∗

0 ))1{θ≤θm∗
L } + q(xf1(θ

m∗
L , xm∗

0 ))1{θ>θm∗
L }

]
−E

[
q′(xf1(θ, x

m∗
0 ))

∂xf
1 (θ,x

m∗
0 )

∂x0
1{θ>θm∗

L }

]
and

δ = − xm∗
0

E[θm∗
L − θ|θ ≤ θm∗

L ]

q′(xf1(θ
m∗
L , xm∗

0 ))

q(xf1(θ
m∗
L , xm∗

0 ))
.

Proposition 5 includes two cases based on the comparison between x∗1(E[θ]) and xmin
0 . In the

first case, x∗1(E[θ]) < xmin
0 , so optimal total debt without knowing θ falls below the minimum

initial debt required to satisfy the financing constraint. Therefore, the financing constraint by itself

already causes over-borrowing, and the borrower’s incentive to dilute old debt at t = 1 further

exacerbates the problem. The optimal policy therefore imposes a debt limit that eliminates any

further incentives of over-borrowing, which leads to no financial flexibility. In the second case,

x∗1(E[θ]) ≥ xmin
0 , so the minimum initial debt remains below optimal total debt without knowing

θ. The optimal policy preserves some financial flexibility to balance between over- and under-

borrowing. At t = 1, the agent can still borrow flexibly when the liquidity shock is low (high

θ).

A key feature of Proposition 5 is that the financing constraint always binds under non-exclusive

lending. In other words, it is never optimal to borrow more than I at t = 0. Instead, the optimal

strategy selects initial debt x0 and debt limit θL that provide exactly enough capital to fund

investment I and nothing more. The reason is straightforward: less borrowing at t = 0 reduces

over-borrowing incentives at t = 1, creating greater financial flexibility.

Figure 5 compares the optimal contract under multiple lenders, xm∗
1 (θ), with the single-lender

solution xs∗1 (θ) and the second-best benchmark x∗1(θ). In the left panel, which plots total debt,

xm∗
1 (θ) is flat for low θ and decreases monotonically once θ exceeds θL. At low θ, the borrower

underborrows relative to both the second-best and single-lender solutions; at high θ, she overbor-

rows. Under the given parameters, the financing constraint binds under the single-lender case (i.e.,

I > Is). As a result, xs∗1 (θ) exceeds x∗1(θ) for θ < θH , becoming flat for θ > θH , and eventually

falling below x∗1(θ). The right panel shows the transfer the borrower receives at t = 1. In the

second-best solution, transfers are normalized to zero. Under multiple lenders, transfers are con-

stant for low θ and decline with θ thereafter. They fall below the single-lender case when θ is low

but exceed it when θ is high.
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Figure 5: Optimal contract single lender and multiple lender. We assume that θ ∼ U [0.4, 1], Y = 1,
c(q) = q2 and I = 0.4×Imax, where the maximum pledgeable income is Imax = maxx1∈[0,Y ] x1q(x1).

Figure 6 shows how the optimal debt policy under multiple lenders varies with investment size

I. As I increases, the initial debt level x0 also rises, amplifying the borrower’s incentive to dilute

initial lenders at t = 1. This exacerbates over-borrowing, requiring a tighter debt limit. As a

result, a larger range of types faces binding constraints ex-post. However, for types that remain

unconstrained, the debt level increases with I.

The solution identified by Proposition 5 can be implemented using a widely observed contrac-

tual mechanism: an initial debt issuance xm∗
0 paired with a maintenance covenant that restricts

total indebtedness to not exceed xf1(θ
m∗
L , xm∗

0 ). Such maintenance covenants are commonplace in

corporate bond issuances and credit agreements. This arrangement restricts financial flexibility,

as the borrower at t = 1 sometimes finds herself constrained from accessing her preferred level of

additional debt when faced with financing needs. Meanwhile, this covenant creates a protection to

existing creditors by restricting the dilution problem.

Linear Example. The minimum feasible borrowing at t = 0 is

xmin
0 =

Y −
√
Y 2 − 4cI

2

and

x∗1(E[θ]) =
1− E[θ]
2− E[θ]

Y.
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Figure 6: Comparative statics of face value at t = 1 for changes in initial investment I. We assume
that θ ∼ U [0.4, 1], Y = 1 and c(q) = q2.

From here, we get that x∗1(E[θ]) > xmin
0 if E[θ] < 2

√
Y 2−4cI

Y+
√
Y 2−4cI

. In this case, (x0, θL) solve

I =
x0(Y − x0)

c
E
[

1

2− θL
1{θ≤θL} +

1

2− θ
1{θ>θL}

]
x0

Y − x0
=

(1− δ)E
[

1
2−θL

1{θ≤θL} +
1

2−θ1{θ>θL}

]
E
[

1
2−θ1{θ>θL}

]
where

δ =
2− θL

E[θL − θ|θ ≤ θL]

x0
Y − x0

.

In the linear example, we have the following comparative statics result.

Proposition 6. Consider the linear example and define

ξ ≡ c · I
Y

.

The threshold θL and debt ratio x0
Y that solve the equations in Proposition 5 depend on (c, I, Y ) only

through the composite parameter ξ. Additional financing flexibility at t = 1 (i.e., x∗1(E[θ]) > xmin
0 )
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exists if

E[θ] <
2
√
1− 4ξ

1 +
√
1− 4ξ

.

In this case, both θL and x0
Y are increasing in ξ. Specifically, they increase with c and I but decrease

with Y .
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Figure 7: Comparative statics debt limit. We assume Y = 1, c(q) = q2, and G(θ) =
(
θ−θ
1−θ

)γ
, where

θ = 0.4. The expected liquidity shock is given by E[θ] = θ + γ
γ+1(1 − θ). In the left panel, we

consider the uniform case with γ = 1 and consider I/Imax ∈ [0.2, 0.7]. In the right panel, we take
I/Imax = 0.4 and consider γ ∈ [0.5, 3].

We plot these results in Figure 7. The left panel shows how the optimal solution under multiple

lenders varies with investment size I, normalized by the maximum pledgeable income Imax. As I

increases, the borrower must raise more initial funds, leading to a higher xm∗
0 . To mitigate stronger

incentives to overborrow at t = 1, the optimal debt limit xL∗1 must decrease. The right panel shows

how the multiple lender solution varies with E[θ]. We increase E[θ] by shifting the distribution

according to first-order stochastic dominance. As E[θ] increases, there is less need to borrow at

t = 1, and the value of financial flexibility becomes less important. As a result, over-borrowing

becomes a relatively bigger concern. Consequently, the optimal debt limit xL∗1 decreases to provide

tighter borrowing constraints. Since initial lenders face lower dilution, they are willing to lend more

for any given x0. To raise the required investment I, the optimal initial debt xm∗
0 can therefore be

lower.

Next, we examine the effect of uncertainty by examining the impact of increasing the dispersion
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in the distribution of liquidity shocks θ. In the following example, we model the liquidity shocks θ

using a beta distribution, because this allows us to increase the dispersion while keeping a constant

mean without changing the support [
¯
θ, θ̄]. By varying the shape parameters appropriately, we can

adjust the dispersion of θ without altering its mean or its bounded support. In particular, we set

θ̄ = 1 and let

g(θ) =
Γ(α+ β)

Γ(α)Γ(β)

(
θ −

¯
θ

1−
¯
θ

)α−1(1− θ

1−
¯
θ

)β−1 1

1−
¯
θ
, ∀θ ∈ [

¯
θ, 1],

where Γ(·) denotes the gamma function and

α = k
E[θ]−

¯
θ

1−
¯
θ

β = k
1− E[θ]
1−

¯
θ

The spread factor k measures the dispersion of the distribution and is inversely related to the

variance of the distribution. In particular, the standard deviation of θ is

σ(θ) =

√
(1− E[θ])(E[θ]−

¯
θ)

k + 1
.

Figure 8 shows that the debt limit gets higher as σ increases because the value of financial flexibility

increases with the uncertainty in liquidity shock.

5 Extensions

5.1 Short-Term Debt

So far, we have only allowed initial lenders to hold long-term debt due at t = 2 to highlight the

dilution and non-exclusivity problem. However, short-term debt is another natural solution. We

now explore this possibility by allowing the borrower to finance the upfront investment at t = 0

using a combination of short-term debt b (maturing at t = 1) and long-term debt x0 (maturing at

t = 2). Since the borrower is financially constrained at t = 1, she must issue new debt to repay the

short-term debt b due at that time.

It is immediately clear that short-term debt must be riskless because there is no cash-flow risk

at t = 1.8 In fact, because short-term debt is riskless, it completely crowds out long-term debt. We

have the following result.

8If the borrower were to default under some report θ̂ (resulting in zero payoff), she would instead choose a report θ̂′

that avoids default and yields a positive payoff. Thus, truthful reporting requires that default never occurs, meaning
short-term debt must be riskless.
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Figure 8: Effect of mean-preserving spread in liquidity shocks. We assume Y = 1, c(q) = q2, and
G(θ) is beta distributed with E[θ] = 0.7 and Θ = [0.4, 1].

Proposition 7. If the borrower can issue both short- and long-term debt, she will exclusively

borrow short-term debt b = I due at t = 1. At t = 1, she rolls over the short-term debt by borrowing

x1(θ) = maxx1(θ), x1(θH) from new lenders, where θH satisfies b = x1(θH)q(x1(θH)).

In practice, firms rarely issue only short-term debt because our analysis has abstracted from

its potential downsides. For instance, our model assumes frictionless debt markets, thereby ignor-

ing any costs associated with rolling over short-term debt. Moreover, results would differ if we

introduced cash-flow uncertainty at t = 1. In a related setting with such uncertainty and without

commitment to debt issuance policies, Hu et al. (2021) show that borrowers may issue long-term

debt when short-term debt becomes risky. This also relates to Diamond and He (2014), who find

that short-term debt can create greater debt overhang than long-term debt. Thus, our finding that

short-term debt completely crowds out long-term debt results from omitting these frictions and

should be interpreted cautiously. We emphasize, however, that debt maturity is not this paper’s

central focus.

While short-term debt dominates the long-term debt solution with a debt limit studied earlier,

it still fails to implement the constrained optimal allocation. This occurs because repayment at

t = 1 is not contingent on the borrower’s liquidity shock. The second-best solution allows the
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borrower to pledge more cash flow when θ is low and less when θ is high. In the next subsection,

we show how long-term debt with acceleration clauses can achieve this allocation.

5.2 Mandatory Prepayment

An alternative to debt limits for curbing excessive new debt issuance is a mandatory prepayment

covenant. Debt sweeps are common in practice, and they are prepayment provisions that require

borrowers to use part of new debt proceeds to repay existing debt.

Suppose when the borrower reports θ̂, an amount b(θ̂) ∈ [0, x0] becomes due at t = 1. Under

truthful reporting (θ̂ = θ), the net proceeds from new debt issuance after prepayment are:

τ1(θ) = (x1(θ)− x0)q(x1(θ)− b(θ))− b(θ).

Anticipating the mandatory prepayment provision, lenders’ participation constraint at t = 0 be-

comes

τ0 = E [(x0 − b(θ))q(x1(θ)− b(θ)) + b(θ)] .

Let x+1 (θ) ≡ x1(θ) − b(θ) be the face value of debt after the prepayment and let m1(θ) ≡
b(θ)

(
1− q(x+1 (θ))

)
, we can write

τ1(θ) = (x+1 (θ)− x0)q(x
+
1 (θ))−m1(θ),

where m1(θ) corresponds to the transfer of funds from new lenders to old lenders. The participation

constraint for the initial borrowers implies that

τ0 = E
[
x0q(x

+
1 (θ)) +m1(θ)

]
.

Substituting in the borrower’s expected payoff at t = 0, we get

τ0 − I + E
[
τ1(θ) + θV2

(
x+1 (θ)

) ]
= E

[
W1(x

+
1 (θ), θ)

]
− I.

If the borrower is financially constrained, we need to have that τ1(θ) ≥ 0, which requires that

(x+1 (θ)− x0)q(x
+
1 (θ)) ≥ m1(θ).

We can write the borrower problem at t = 0 as
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max
x0,x

+
1 (θ),m1(θ)

E
[
W1(x

+
1 (θ), θ)

]
− I

subject to

θ ∈ argmax
θ̂

{
V1(x

+
1 (θ̂), x0, θ)−m1(θ̂)

}
E
[
x0q(x

+
1 (θ)) +m1(θ)

]
≥ I

m1(θ) ≤ (x+1 (θ)− x0)q(x
+
1 (θ))

m1(θ) ≤ x0
(
1− q(x+1 (θ))

)
.

(27)

We have the following result.

Proposition 8. Let xs∗1 (θ) be the solution to the single lender problem in Proposition 2. If

W1(x
s∗
1 (

¯
θ),

¯
θ)− θHV2(x

s∗
1 (θH)) +

∫ θH

¯
θ

V2(x
s∗
1 (θ̃))dθ̃ ≤ xs∗1 (θH) (28)

then x0 = xs∗1 (θ̄) and x+∗
1 (θ) = xs∗1 (θ) together with

m1(θ) = V1(x
+∗
1 (θ), x0, θ)− θHV2(x

+∗
1 (θH)) +

∫ θH

θ
V2(x

+∗
1 (θ̃))dθ̃

solve the optimal prepayment problem (27).

Implementation Next, we look at the implementation of the mandatory prepayment. First, we

let

x1(θ) = x+1 (θ) + b(θ) = x+1 (θ) +
m1(θ)

1− q(x+1 (θ))

If x1(θ) is decreasing on [
¯
θ, θH ], we can define the inverse θ(x1) = x−1

1 (θ). In this case, we can

write the prepayment as a function of the issuance ∆x1 at t = 1 as

B(∆x1) = b(θ(x0 +∆x1)).

In terms of implementation, we can write the prepayment as a debt sweep specifying the percent-

age of the amount issued that needs to be used to repay debt. In particular, letting B(∆x1) =

α(∆x1)q(x0 +∆x1)∆x1 we can specify a non-linear debt sweep

α(∆x1) =
B(∆x1)

q(x0 +∆x1)∆x1
.
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Figure 9: Implementation of optimal contract using non-linear debt sweep. We assume that θ ∼
U [0.4, 1], Y = 1, c(q) = q2, and I = 0.4× Imax.

Figure 9 illustrates an example of a non-linear debt sweep in the context of the linear example.

6 Conclusion

This paper examines the optimal design of financial flexibility for firms facing financing con-

straints and non-exclusive lending. We show that the tradeoff between preserving access to liquidity

and preventing excessive borrowing leads to an endogenous debt limit as the optimal contractual

solution. This limit allows firms to borrow flexibly when facing modest liquidity shocks while con-

straining over-borrowing during severe shocks. Our model provides a theoretical foundation for the

prevalence of maintenance covenants in debt contracts, demonstrating how they mitigate creditor

dilution while preserving necessary financial flexibility. The analysis highlights how financing con-

straints shape firms’ borrowing capacity and offers insights into the trade-offs involved in designing

optimal debt contracts under asymmetric information and non-exclusive lending. Future research

could explore how stochastic cash flows or alternative covenant structures might further refine these

contractual solutions.
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Appendix

A Single Lender Equilibrium

For notational convenience, let us define

V̄1 = τ1(θ̄) + θ̄V2(x1(θ̄))

as type θ̄’s continuation payoff at t = 1.

Lemma 3. Any incentive-compatible pair {τ1(θ), x1(θ)} satisfying V̄1 ≥ θ̄V2(x1(θ̄)) satisfies the

constraint

τ1(θ) = V̄1 − θV2 (x1(θ))−
∫ θ̄

θ
V2(x1(θ̃))dθ̃ ≥ 0 ∀θ ∈ Θ.

Proof of Lemma 3

Proof. We verify that it is sufficient to consider the non-negativity constraint of τ1(θ) for the highest

type. Integration by parts implies that

θV2 (x1(θ)) +

∫ θ̄

θ
V2(x1(θ̃))dθ̃ = θ̄V2

(
x1(θ̄)

)
−
∫ θ̄

θ
θ̃V ′

2(x1(θ̃))dx1(θ̃)

Hence, we can write the envelope condition as

τ1(θ) = τ1(θ̄) +

∫ θ̄

θ
θ̃V ′

2(x1(θ̃))dx1(θ̃)

It follows that, for any θ′′ > θ′, we have

τ1(θ
′′) = τ1(θ

′)−
∫ θ′′

θ′
θ̃ V ′

2(x1(θ̃))︸ ︷︷ ︸
<0

dx1(θ̃)︸ ︷︷ ︸
≤0

≤ τ1(θ
′),

which means that τ1(θ̄) ≥ 0 implies τ1(θ) ≥ 0 for all θ < θ̄. Moreover, the constraint τ(θ̄) ≥ 0 is

equivalent to require that V̄1 ≥ θ̄V2

(
x1(θ̄)

)
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Proof of Proposition 1

Proof. Let x1 ≡ {x1(θ)}θ∈Θ. For a fixed λ (and therefore a fixed δ) we have

max
x1

U(x1) ≡
∫ θ̄

¯
θ

[
W1(x1(θ), θ) + (1− δ)

G(θ)

g(θ)
V2 (x1(θ))

]
dG(θ)− (1− δ)θ̄V2

(
x1(θ̄)

)
s.t. x1 is non-increasing.

Starting from x1, the directional derivative in the direction h(θ) is generally defined as

∇U(x1;h) =
d

dk
U(x+ kh)

∣∣∣
k=0

,

which, in our case, is given by

∇U(x1;h) = (1− δ)θ̄q
(
x1(θ̄)

)
h(θ̄) +

∫ θ̄

¯
θ

[∂W1(x1(θ), θ)

∂x1
g(θ)− (1− δ)G(θ)q (x1(θ))

]
h(θ)dθ.

Letting

Φ(θ;x1) ≡
∫ θ

¯
θ

[∂W1(x1(θ̃), θ̃)

∂x1
g(θ̃)− (1− δ)G(θ̃)q

(
x1(θ̃)

) ]
dθ̃,

the directional derivative can be written as

∇U(x1;h) = (1− δ)θ̄q
(
x1(θ̄)

)
h(θ̄) +

∫ θ̄

¯
θ

Φ′(θ;x1)h(θ)dθ.

Using integration by parts, we obtain that ∇U(x1;h) can be written as

∇U(x1;h) =
[
Φ(θ̄;x1) + (1− δ)θ̄q

(
x1(θ̄)

)]
h(θ̄)−

∫ θ̄

¯
θ

Φ(θ;x1)dh(θ).

This alternative formulation for the directional derivative is convenient because it is written explic-

itly in terms of dh(θ) rather than h(θ). This allows us to incorporate the monotonicity constraint

directly into the analysis of the first-order conditions.

Let P be set of all non-increasing functions on Θ. Lemma 1 in (Luenberger, 1969, p. 227)

provides the following necessary and sufficient condition for x1 to maximize U :

∇U(x1; x̃1) ≤ 0 ∀ x̃1 ∈ P

∇U(x1;x1) = 0.

A2



In our case, these two conditions become

[
Φ(θ̄;x1) + (1− δ)θ̄q

(
x1(θ̄)

)]
x̃1(θ̄)−

∫ θ̄

¯
θ

Φ(θ;x1)dx̃1(θ) ≤ 0 ∀ x̃1 ∈ P (29a)

[
Φ(θ̄;x1) + (1− δ)θ̄q

(
x1(θ̄)

)]
x1(θ̄)−

∫ θ̄

¯
θ

Φ(θ;x1)dx1(θ) = 0. (29b)

We are going to construct a solution, x1, given by

x1(θ) =

xs1(θ) if θ ∈ [
¯
θ, θH)

xs1(θH) if θ ∈ [θH , θ̄]

and show that it satisfies (29). Note (14) implies that xs1(θ) solves

∂W1(x1, θ)

∂x1
− (1− δ)

G(θ)

g(θ)
q (x1) = 0.

Therefore, Φ(θ;x1) = 0 for all θ ∈ [
¯
θ, θH ]. Moreover, we define θH ∈ [

¯
θ, θ̄] as the solution to

∫ θ̄

θH

[∂W1(x
s
1(θH), θ̃)

∂x1
g(θ̃)− (1− δ)q (xs1(θH)))G(θ̃)

]
dθ̃ + (1− δ)θ̄q (xs1(θH)) = 0. (30)

We will show at the end of this proof that this solution exists. By construction, we have

Φ(θ̄;x1) + (1− δ)θ̄q
(
x1(θ̄)

)
= 0,

and (29b) holds. Moreover, (29a) becomes

−
∫ θ̄

¯
θ

Φ(θ;x1)dx̃1(θ) ≤ 0 ∀ x̃1 ∈ P.

Assumptions 4 and xs1(θ) is non-increasing in θ imply that

∂W1(x1, θ)

∂x1

∣∣∣
x1=xs

1(θH)
− (1− δ)

G(θ)

g(θ)
q (xs1(θH)) ≤ 0, ∀θ ∈ [θH , θ̄]

so Φ(θ;x1) ≤ 0 for all θ ∈ (θH , θ̄]. Therefore, the first order condition (29) reduces to

∫ θ̄

θH

Φ(θ;x1)dx̃1(θ) ≥ 0 ∀ x̃1 ∈ P,
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which is satisfied for all non-increasing x̃1.

The final step is to consider the existence of a solution to equation (30). Note that

∂2W1(x
s
1(θH), θ)

∂θ∂x1
=

∂

∂x1

(
∂W1(x

s
1(θH), θ)

∂θ

)
=

∂V2(x
s
1(θH))

∂x1
= −q(xs1(θH)).

Therefore, for θ ∈ [θH , θ̄], we have

∂W1(x
s
1(θH), θ)

∂x1
=

∂W1(x
s
1(θH), θH)

∂x1
+(θH−θ)q(x1(θH)) = (θH−θ)q(x1(θH))+(1−δ)

G(θH)

g(θH)
q (x1(θH)) ,

which allow us to simplify equation (30) in the following way

q(xs1(θH))

∫ θ̄

θH

[
(θH − θ̃) + (1− δ)

G(θH)

g(θH)
− (1− δ)

G(θ̃)

g(θ̃)

]
g(θ̃)dθ̃ + (1− δ)θ̄q (xs1(θH)) = 0.

Hence, we can cancel q(xs1(θH)) and obtain an expression exclusively in terms of δ and g(θ)

(1− δ)
G(θH)(1−G(θH))

g(θH)
+

∫ θ̄

θH

[
(θH − θ̃)g(θ̃)− (1− δ)G(θ̃)

]
dθ̃ + (1− δ)θ̄ = 0.

Integrating by parts, we get ∫ θ̄

θH

[
(θH − θ̃)g(θ̃)−G(θ̃)

]
dθ̃ = θH − θ̄

so, we end with

H(θH) ≡ (1− δ)
G(θH)(1−G(θH))

g(θH)
+ θH − δ

[
θ̄ −

∫ θ̄

θH

G(θ̃)dθ̃

]
= 0.

The function H(θH) satisfies the following properties

H(
¯
θ) =

¯
θ − δE[θ]

H(θ̄) = (1− δ)θ̄

H ′(θH) =

[
(2− δG(θH))

1−G(θH)

g(θH)

G(θH)
− (1− δ)

g′(θH)

g(θH)

]
G(θH)(1−G(θH))

g(θH)
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Note that we can write

H ′(θH) =

1 + δ +G(θH)

1−G(θH)

g(θH)

G(θH)
+ (1− δ)

∂ log G(θH)
g(θH)

∂θH

 G(θH)(1−G(θH))

g(θH)

If G(θ) is log-concave, then G(θ)/g(θ) is increasing, which means that
∂ log

G(θH )

g(θH )

∂θH
> 0. So H ′(θH) >

0. Hence, a solution to the equation (30) exists only if δ ≥
¯
θ/E[θ].

If δ <
¯
θ/E[θ], the first order condition is satisfied by setting θH =

¯
θ and x1(θ) = xp1 such that

Φ(θ̄;x1 = xp1) + (1− δ)θ̄q (xp1) = 0,

which requires that∫ θ̄

¯
θ

[∂W1(x
p
1, θ̃)

∂x1
g(θ̃)− (1− δ)q(xp1)G(θ̃)

]
dθ̃ + (1− δ)θ̄q(xp1) = 0.

Using integration by parts, we get that

xp1q
′(xp1) + (1− δE[θ]) q(xp1) = 0.

Noticing that xs1(¯
θ) solves

xs1(¯
θ)q′(xs1(¯

θ)) + (1−
¯
θ) q(xs1(¯

θ)) = 0

we realize that whenever
¯
θ > δE[θ], we have that xp1 > xs1(¯

θ). This, in turn implies that

∂W1(x
p
1, θ)

∂x1
g(θ)− (1− δ)q(xp1)G(θ) < 0

so Φ(θ;x1 = xp1) < 0 which means that

−
∫ θ̄

¯
θ

Φ(θ;x1 = xp1)dx̃1(θ) ≤ 0 ∀ x̃1 ∈ P,

which means that x1(θ) = xp1 is optimal.

Proof of Proposition 2

Suppose that δ = 1 (or equivalently λ = 0). In this case, it can be readily verified that θH = θ̄

and xe1(θ) = x∗1(θ). This candidate solution – together with the transfer at t = 1 defined by (10) –
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solves the single lender equilibrium under incomplete information only if the financing constraint

is satisfied, that is

τ0 = E
[
W1 (x

∗
1(θ), θ) +

G(θ)

g(θ)
V2 (x

∗
1(θ))

]
− θ̄V2

(
x∗1(θ̄)

)
= Īe ≥ I

Suppose this is not the case, and assume that

E
[
W1 (x

∗
1(θ), θ) + V2 (x

∗
1(θ))

G(θ)

g(θ)

]
− θ̄V2

(
x∗1(θ̄)

)
< I,

We show that there exists δ ∈ [0, 1] such that

T0(δ) = E
[
W1 (x

e
1(θ, δ), θ) + V2 (x

e
1(θ, δ))

G(θ)

g(θ)

]
− θ̄V2

(
xe1(θ̄, δ)

)
= I

First, notice that when δ = 1, we have that xe1(θ, δ) = x∗1(θ). Hence, from our initial hypothesis,

T0(1) < I. Next, consider the case when δ = 0. In this case, we have that θH =
¯
θ and xe1(θ, δ) = xp1

where

xp1q
′(xp1) + q(xp1) = 0

which means that xp1 = argmaxx xq(x). It follows then that

T0(0) = xp1q(x
p
1) + E

[
θ +

G(θ)

g(θ)

]
V2 (x

p
1)− θ̄V2 (x

p
1) = xp1q(x

p
1).

By Assumption 2, this means that T0(0) > I. By the maximum theorem, xe1(θ, δ) is continuous in

δ, and so it is T0(δ). This means that there exists some δe ∈ [0, 1] such that T0(δe) = I.

B Multiple Lender Equilibrium

Let us first rewrite the problem in (19). Substituting W1(x1, θ) = x0q(x1) + V1 (x1, x0, θ)

together with equation (18) into the objective function in (19) and applying integration by parts,
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we obtain the following problem:

W0(x0) = max
x1(θ)≥x0

V1(x1(θ̄), x0, θ̄) + E
[
x0q(x1(θ))−

G(θ)

g(θ)
V2(x1(θ))

]
subject to

V1(x1(θ), x0, θ) = V1(x1(θ̄), x0, θ̄)−
∫ θ̄

θ
V2(x1(θ̃))dθ̃ ∀θ ∈ Θ

x0E [q(x1(θ))] ≥ I

x1(θ) is non-increasing.

(31)

Proof of Proposition 3

Proof. Letting λ be the multiplier of the investment constraint, we write

max
θL

∫ θL

¯
θ

(
W1(x

f
1(θL), θ) + λx0q(x

f
1(θL))

)
dG(θ) +

∫ θ̄

θL

(
W1(x

f
1(θ), θ) + λx0q(x

f
1(θ))

)
dG(θ).

Dividing by 1+ λ and defining δ ≡ 1/(1 + λ), we can rewrite the previous optimization problem in

the following equivalent form

max
θL

∫ θL

¯
θ

(
(1− δ)x0q(x

f
1(θL)) + δW1(x

f
1(θL), θ)

)
dG(θ)+

∫ θ̄

θL

(
(1− δ)x0q(x

f
1(θ)) + δW1(x

f
1(θ), θ))

)
dG(θ).

Next, we consider the first-order condition for θL, which is given by

∂ObjFun

∂θL
= xf ′1 (θL)

∫ θL

¯
θ

(
x0q

′(xf1(θL)) + δ(θL − θ)q(xf1(θL))
)
dG(θ)

= xf ′1 (θL)G(θL)q(x
f
1(θL))

{
x0

q′(xf1(θL))

q(xf1(θL))
+ δE[θL − θ|θ ≤ θL]

}
= 0

Assumptions 3 and 1 imply that G(θ) and q(x) are log-concave; accordingly, the functions E[θL −
θ|θ ≤ θL] and

q′(xf
1 (θL))

q(xf
1 (θL))

are increasing in θL. It follows that the objective function is quasi-concave,

so any local maximum is also a global one. The second-order condition, evaluated at a local
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maximum θL, is

∂2ObjFun

∂θ2L
= xf ′1 (θL)

[
δG(θL) + x0

q′(xf1(θL))

q(xf1(θL))
g(θL)

]
q(xf1(θL))+

+
(
xf ′1 (θL)

)2
G(θL)

[
x0q

′′(xf1(θL)) + δE[θL − θ|θ ≤ θL]q
′(xf1(θL))

]
.

First, we verify that θL >
¯
θ. Ealuting the second order condition at at θL =

¯
θ, we get that

∂ObjFun
∂θL

= 0 and ∂2ObjFun
∂θ2L

> 0, which means that θL =
¯
θ is a local minimum. Second, the solution

is interior is interiero (that is, θL < θ̄) only if ∂ObjFun
∂θL

∣∣∣
θL=θ̄

≤ 0. As xf
′

1 (θL) < 0, we this is the case

only if

x0q
′(xf1(θ̄)) + δE

[
θ̄ − θ

]
q(xf1(θ̄)) ≥ 0.

In this case, θL is given by the solution to

x0
q′(xf1(θL))

q(xf1(θL))
+ δE[θL − θ|θ ≤ θL] = 0. (32)

On the other hand, if

x0q
′(xf1(θ̄)) + δE

[
θ̄ − θ

]
q(xf1(θ̄)) < 0,

then we get that ∂ObjFun
∂θL

∣∣∣
θL=θ̄

> 0, so θL = θ̄ = 1.

The next step is to consider the financing constraint. If the constraint is slack, then δ = 1. Let

θucL the solution when δ = 1. The solution is interior only if

x0q
′(xf1(θ̄)) +

(
θ̄ − E[θ]

)
q(xf1(θ̄)) ≥ 0.

Noting that when θ̄ = 1 we have xf1(θ̄) = x0, this is equivalent to saying that

∂W1(x1,E[θ])
x1

∣∣∣∣∣
x1=x0

≥ 0,

which means that x∗1(E[θ]) ≥ x0. If this is the case, the solution from equation (32) becomes

x0
q′(xf1(θ

uc
L ))

q(xf1(θ
uc
L ))

+ E[θucL − θ|θ ≤ θucL ] = 0
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On the other hand, if the constraint is binding. Then, θL = θbcL , where θbcL satysfies

x0E
[
q
(
xf1(θ

bc
L )
)
1{θ≤θbcL } + q

(
xf1(θ)

)
1{θ>θbcL }

]
= I,

and from equation (32) we get that

δ = − x0

E[θbcL − θ|θ ≤ θbcL ]

q′(xf1(θ
bc
L ))

q(xf1(θ
bc
L ))

.

Finally, notting that for any θL > θbcL , we have

x0E
[
q
(
xf1(θL)

)
1{θ≤θL} + q

(
xf1(θ)

)
1{θ>θL}

]
> I,

we conclude that the solution to the optimization problem is max{θbcL , θucL }.

Proof of Proposition 4

Proof. Our verification analysis follows the approach in Amador et al. (2006) and Amador and

Bagwell (2013). In particular, we find a Lagrange multiplier such that the debt limit and the

multiplier are a saddle-point of the Lagrangian. The optimality of the policy then follows from the

sufficient conditions in Theorem 2 in (Luenberger, 1969, p. 221). First, we will consider a Lagrange

relaxation of the optimization problem in (31). Letting λ be the Lagrange multiplier of the financial

constraint, we can consider the problem

max
x1(θ)

V1(x1(θ̄), x0, θ̄) + E
[
(1 + λ)x0q(x1(θ))−

G(θ)

g(θ)
V2(x1(θ̃))

]
− λI

subject to

V1(x1(θ), x0, θ) = V1(x1(θ̄), x0, θ̄)−
∫ θ̄

θ
V2(x1(θ̃))dθ̃ ∀θ ∈ Θ

x1(θ) ≥ x0

x1(θ) is non-increasing.

(33)
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Dividing by 1/(1 + λ) and defining δ ≡ 1/(1 + λ), we consider the problem

max
x1(θ)

δV1(x1(θ̄), x0, θ̄) + E
[
x0q(x1(θ))− δ

G(θ)

g(θ)
V2(x1(θ̃))

]
subject to

V1(x1(θ), x0, θ) = V1(x1(θ̄), x0, θ̄)−
∫ θ̄

θ
V2(x1(θ̃))dθ̃ ∀θ ∈ Θ

x1(θ) ≥ x0

x1(θ) is non-increasing.

(34)

If we let Λ(θ) be the cumulative Lagrange multiplier for the constraint

V1(x1(θ), x0, θ) = V1(x1(θ̄), x0, θ̄)−
∫ θ̄

θ
V2(x1(θ̃))dθ̃ ∀θ ∈ Θ,

then, the Lagrangian for our problem is

L(x1,Λ) = V1(x1(θ̄), x0, θ̄)
(
δ + Λ(

¯
θ)− Λ(θ̄)

)
+

∫ θ̄

¯
θ

[x0q (x1(θ)) g(θ)− δG(θ)V2(x1(θ))] dθ

+

∫ θ̄

¯
θ

(
V1(x1(θ), x0, θ) +

∫ θ̄

θ
V2

(
x1(θ̃)

)
dθ̃

)
dΛ(θ)

If we change the order of integration, we obtain that∫ θ̄

¯
θ

∫ θ̄

θ
V2

(
x1(θ̃)

)
dθ̃dΛ(θ) =

∫ θ̄

¯
θ

Λ(θ)V2(x1(θ))dθ.

Substituting in L(x1,Λ) we get the following expression for the Lagrangean.

L(x1,Λ) = V1(x1(θ̄), x0, θ̄)
(
δ + Λ(

¯
θ)− Λ(θ̄)

)
+

∫ θ̄

¯
θ

[
x0q (x1(θ)) g(θ) +

(
Λ(θ)− δG(θ)

)
V2(x1(θ))

]
dθ

+

∫ θ̄

¯
θ

V1(x1(θ), x0, θ)dΛ(θ) (35)
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Next, we consider the following optimization problem

max
x1(θ)

L(x1,Λ)

x1(θ) ≥ x0

x1(θ) is non-increasing.

Denoting the partial derivative with respect to x1 by V ′
1(x1, x0, θ) ≡ ∂V1(x1,x0,θ)

∂x1
, we get that the

directional derivative of L(x1,Λ) in the direction h is:

∇L(x1,Λ;h) = V ′
1(x1(θ̄), x0, θ̄)

(
δ + Λ(

¯
θ)− Λ(θ̄)

)
h(θ̄)

+

∫ θ̄

¯
θ

[
x0q

′ (x1(θ)) g(θ)− (Λ(θ)− δG(θ))q(x1(θ))
]
h(θ)dθ +

∫ θ̄

¯
θ

V ′
1(x1(θ), x0, θ)h(θ)dΛ(θ) (36)

Evaluating the gradient in equation (36) at

xl1(θ) ≡

xf1(θ) if θ ≥ θL

xf1(θL) if θ < θL.

we get

∇L(xl
1,Λ;h) =

∫ θ̄

θL

[
x0q

′(xf1(θ))g(θ)− (Λ(θ)− δG(θ))q(xf1(θ))
]
h(θ)dθ

+

∫ θL

¯
θ

[
x0q

′(xf1(θL))g(θ)− (Λ(θ)− δG(θ))q(xf1(θL))
]
h(θ)dθ +

∫ θL

¯
θ

V ′
1(x

f
1(θL), x0, θ)h(θ)dΛ(θ)

Letting

Λ(θ) =


δ if θ = θ̄

δG(θ) +
x0q′(x

f
1 (θ))

q(xf
1 (θ))

g(θ) if θ ∈ [θL, θ̄)

0 if θ ∈ [
¯
θ, θL)

(37)

and noticing that V ′
1(x

f
1(θL), x0, θ) = (θL − θ)q(xf1(θL)), we get

∇L(xl
1,Λ;h) =

∫ θL

¯
θ

[
x0q

′(xf1(θL))g(θ) + δG(θ)q(xf1(θL))
]
h(θ)dθ
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We want to rewrite the directional derivative ∇L(xl
1,Λ;h) in terms of the increments of h(θ), so we

can incorporate the monotonicity constraint directly the first order conditions. With this objective

in mind, we let

Φ(θ) ≡
∫ θ

¯
θ

[
x0q

′(xf1(θL))g(θ̃) + δG(θ̃)q(xf1(θL))
]
dθ̃

= x0q
′(xf1(θL))G(θ) + δq(xf1(θL))

∫ θ

¯
θ

G(θ̃)dθ̃

and use integration by parts to rewrite the directional derivative as

∇L(xl
1,Λ;h) = Φ(θL)h(θL)−

∫ θL

¯
θ

Φ(θ)dh(θ).

Evaluating Φ(θ) at θL we get

Φ(θL) = x0q
′(xf1(θL))G(θL) + δq(xf1(θL))

∫ θ

¯
θ

G(θ̃)dθ̃ = G(θL)q(x
f
1(θL))

[
x0

q′(xf1(θL))

q(xf1(θL))
+ δE[θL − θ|θ ≤ θL]

]

This expression is equal to zero when θL and δ are given by Proposition 3. Hence, we can write

the directional derivative as

∇L(xl
1,Λ;h) = −

∫ θL

¯
θ

Φ(θ)dh(θ).

If L(x1,Λ) is concave (we will return to verify this latter), and we let P be set of all non-increasing

functions on Θ, then Lemma 1 in (Luenberger, 1969, p. 227) provides the following necessary and

sufficient condition for xl
1 to maximize L(x1,Λ):

∇L(xl
1,Λ; x̃1) ≤ 0 ∀ x̃1 ∈ P

∇L(xl
1,Λ;xl

1) = 0,

As dx̃1(θ) ≤ 0, we need that Φ(θ) ≤ 0, which is equivalent to requiring that

x0
q′(xf1(θL))

q(xf1(θL))
+ δ

∫ θ

¯
θ

G(θ̃)

G(θ)
dθ̃ ≤ 0, ∀θ ∈ [

¯
θ, θL). (38)
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Using integration by parts, we get ∫ θ

¯
θ

G(θ̃)

G(θ)
dθ̃ = θ − E[θ̃|θ̃ ≤ θ]

so can write equation (38) as

0 ≥ x0q
′(xf1(θL))

q(xf1(θL))
+ δE[θ − θ̃|θ̃ ≤ θ], ∀θ ∈ [

¯
θ, θL).

Substituting
x0q′(x

f
1 (θL))

q(xf
1 (θL))

from Proposition 3, we get

1 ≥ E[θ̃|θ̃ ≤ θL]− E[θ̃|θ̃ ≤ θ]

θL − θ
, ∀θ ∈ [

¯
θ, θL).

As G(x) log-concave (Assumption 1), the function θ − E[θ̃|θ̃ ≤ θ] is increasing in θ (Bagnoli and

Bergstrom, 2005) which means that the previous inequality is satisfied for all θ < θL.

It remains to verify the concavity of the L(x1,Λ). Substituting the Λ from equation (37) in

the Lagrangian in (35), we get

L(x1,Λ) =

∫ θL

¯
θ

[
x0q (x1(θ)) +

x0q
′(xf1(θ))

q(xf1(θ))
V2(x1(θ))

]
g(θ)dθ

+

∫ θ̄

θL

[
x0q (x1(θ))− δ

G(θ)

g(θ)
V2(x1(θ))

]
g(θ)dθ +

∫ θ̄

¯
θ

V1(x1(θ), x0, θ)dΛ(θ) (39)

Assumption 3 implies that q(x1) is concave, so the functions x0q (x1)+
x0q′(x

f
1 (θ))

q(xf
1 (θ))

V2(x1), x0q (x1)−

ρδG(θ)
g(θ) V2(x1) and V1(x1, x0, θ) are concave in x1 for all θ ∈ Θ. Hence, for the Lagrangian to be

concave, it suffices that Λ(θ) is non-decreasing. This is the case if:

1. On (θL, θ̄] the function

δG(θ) +
x0q

′(xf1(θ))

q(xf1(θ))
g(θ)

is increasing.

2. At θ̄, Λ(θL) ≥ Λ(θL−), which requires that

δG(θL) +
x0q

′(xf1(θ))

q(xf1(θ))
g(θ) ≥ 0
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For the second condition, notice that, after substituting the first order condition for θL in Propo-

sition 3, we can write the condition for Λ(θL) ≥ Λ(θL−) as

1− E[θL − θ|θ ≤ θL]
g(θL)

G(θL)
=

∂

∂θL

∫ θL

¯
θ G(θ)dθ

G(θL)

 ≥ 0,

which holds whenever G(θ) is log-concave.

Proof of Proposition 5

We consider the optimization problem (26). First, notice because x0q(x0) is concave (from

Assumption 3) and maxx0 x0q(x0) ≥ I (from Assumption 2), know that that there are two roots

xmin
0 < xmax

0 to the equation x0q(x0) = I such that x0q(x0) ≥ I only if x0 ∈ [xmin
0 , xmax

0 ]. Hence,

we can write problem (26) as

max
x0∈[xmin

0 ,xmax
0 ]

W0(x0) (40)

where – given the hypothesis in Proposition 4 – we can write W0(x0) as

W0(x0) = max
θL∈Θ

E
[
W1

(
xl1(θ|, x0, θL), θ

)]
subject to

x0E
[
q
(
min{xf1(θ), x

f
1(θL)}

)]
≥ I

(41)

Let W ′
1(x1, θ) ≡ ∂W1(x1,θ)

∂x1
and let xL1 = xf1(θL, x0) be the debt limit in Proposition 3. Let

θ∨θL ≡ max{θ, θL}; by the envelope theorem, we have that for any x0 ∈ [xmin
0 , xmax

0 ] the derivative

Wn′
0 (x0) is

Wn′
0 (x0) = E

[
w′
1(x

f
1(θ ∨ θL, x0), θ)

∂xf1(θ ∨ θL, x0)

∂x0

]

+ λE

[
q(xf1(θ ∨ θL, x0)) + x0q

′(xf1(θ ∨ θL, x0))
∂xf1(θ ∨ θL, x0)

∂x0

]

where λ = δ−1 − 1 is the multiplier of the financing constraint x0E
[
q
(
min{xf1(θ), x

f
1(θL)}

)]
≥ I,

and

∂xf1(θ, x0)

∂x0
=


q′(xf

1 (θ,x0))

V ′′
1 (xf

1 (θ,x0),x0,θ)
if θ < θ̄ = 1

1 if θ = θ̄ = 1.
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We have the following result

Lemma 4. Let x∗0 be a solution to problem (40) and θ∗L the associated solution to problem (41). If

the financing constraint x∗0E
[
q
(
xl1(θ|x∗0, θ∗L)

)]
≥ I is slack, then x0 ≥ x∗1(E[θ]).

Proof. We proceed by contradiction. Suppose that x0 < x∗1(E[θ]). As, xL1 = xf1(θL, x0) > x0, it must

be the case that x0 ∈ (xmin
0 , xmax

0 ) because x0 ∈ {xmin
0 , xmax

0 } together with xL1 > xf1(θ̄, x0) = x0

does not satisfy the constraint x0E
[
q
(
min{xf1(θ), x

f
1(θL)}

)]
≥ I. This means, that x∗0 is in the

interior [xmin
0 , xmax

0 ], so it must satisfy the necessary condition Wn′
0 (x0) = 0. However, if λ = 0 and

θL < θ̄, we have

Wn′
0 (x0) = E

[
w′
1(x

f
1(θ ∨ θL, x0), θ)

∂xf1(θ ∨ θL, x0)

∂x0

]
< 0,

yielding a contradiction.

From here, we can conclude that if the financing constraint is slack. then it must be the case

that x0 ≥ x∗1(E[θ]). The next lemma shows that in any solution, the constraint must be binding.

Lemma 5. If x∗0 be a solution to problem (40) and θ∗L the associated solution to problem (41).

Then, the financing constraint is binding, so x∗0E
[
q
(
xl1(θ|x∗0, θ∗L)

)]
= I.

Proof. We proceed by contradiction. Suppose that the constraint is slack. Then, it must be the case

that x∗0 ∈ (xmin
0 , xmax

0 ), and by Lemma 4 it must be the case that x∗0 ≥ x∗1(E[θ]). From Proposition

3, we get that θ∗L = θ̄ and λ = 0. Next, we show that x∗0 cannot achieve a local maximum at

x∗0. As W1(x1,E[θ]) is concave in x1, and achieves a maximum at x∗1(E[θ]), we have that we have

Wn′
0 (x0) < 0 for any x0 > x∗1(E[θ]), so x∗0 > x∗1(E[θ]) cannot be optimal. Hence, if x∗0 ≥ x∗1(E[θ]) it

must be equal to x∗1(E[θ]). If x∗0 = x∗1(E[θ]) ∈ (xmin
0 , xmax

0 ), then the constraint must be slack for

x0 = x∗1(E[θ]). By continuity, it is also slack for x′0 = x∗1(E[θ]) − ϵ (for some ϵ > 0), which means

that

Wn′
0 (x′0) = E

[
w′
1(x

f
1(θ ∨ θL, x

′
0), θ)

∂xf1(θ ∨ θL, x
′
0)

∂x0

]
< 0.

Taking the limit when ϵ → 0, we get that Wn′
0 (x∗1(E[θ])−) < 0, which means that x∗1(E[θ]) cannot

be optimal. We conclude that the constraint cannot be slack at the optimal solution.

Next, we provide the necessary condition for the case when x∗0 > xmin
0 .
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Lemma 6. If the financing constraint is binding and x0 > xmin
0 , then x0 and θL satisfies the

following necessary conditions

x0 =
(1− δ)E

[
q(xf1(θL, x0))1{θ≤θL} + q(xf1(θ, x0))1{θ>θL}

]
−E

[
q′(xf1(θ, x0))

∂xf
1 (θ,x0)
∂x0

1{θ>θL}

]
δ = − x0

E[θL − θ|θ ≤ θL]

q′(xf1(θL))

q(xf1(θL))

x0E
[
q(xf1(θL, x0))1{θ≤θL} + q(xf1(θ, x0))1{θ>θL}

]
= I.

Proof. If the solution is interior, it must be the case that Wn′
0 (x0) = 0. If xL1 = xf1(θL, x0) > x0,

then we can write the necessary conditions as

Wn′
0 (x0) = E

[
w′
1(x

f
1(θ, x0), θ)

∂xf1(θ, x0)

∂x0
1{θ>θL} + w′

1(x
f
1(θL, x0), θ)

∂xf1(θL, x0)

∂x0
1{θ≤θL}

]

+λE

[
q(xl1(θ, x0|xL1 ) + x0q

′(xf1(θ, x0))
∂xf1(θ, x0)

∂x0
1{θ>θL} + x0q

′(xf1(θL, x0))
∂xf1(θL, x0)

∂x0
1{θ≤θL}

]
= 0

For θ > θL, we have that

w′
1(x

f
1(θ, x0), θ) = x0q

′(xf1(θ, x0)) + V ′
1(x

f
1(θ, x0), x0, θ) = x0q

′(xf1(θ, x0));

while for θ < θL we have

w′
1(x

f
1(θ, x0), θ) = x0q

′(xf1(θ, x0)) + V ′
1(x

f
1(θ, x0), x0, θ) = x0q

′(xf1(θ, x0)) + (θL − θ)q(xf1(θL, x0))

Hence, we can write the equation Wn′
0 (x0) = 0 as

(1 + λ)E

[
x0q

′(xf1(θ, x0))
∂xf1(θ, x0)

∂x0
1{θ>θL} + x0q

′(xf1(θL, x0))
∂xf1(θL, x0)

∂x0
1{θ<θL}

]

E[(θL−θ)1{θ<θL}]q(x
f
1(θL, x0))

∂xf1(θL, x0)

∂x0
+λE

[
q(xf1(θL, x0))1{θ≤θL} + q(xf1(θ, x0))1{θ>θL}

]
= 0
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Noting that E[(θL − θ)1{θ<θL}] = G(θL)E[θL − θ|θ ≤ θL], and letting λ = δ−1 − 1, we can write

E

[
x0q

′(xf1(θ, x0))
∂xf1(θ, x0)

∂x0
1{θ>θL}

]
+G(θL)x0q

′(xf1(θL, x0))
∂xf1(θL, x0)

∂x0

δG(θL)E[θL−θ|θ ≤ θL]q(x
f
1(θL, x0))

∂xf1(θL, x0)

∂x0
+(1−δ)E

[
q(xf1(θL, x0))1{θ≤θL} + q(xf1(θ, x0))1{θ>θL}

]
= 0

From Proposition 3, δ is given by

δ = − x0
E[θL − θ|θ ≤ θL]

q′(xf1(θL))

q(xf1(θL))
,

which means that

G(θL)x0q
′(xf1(θL, x0))

∂xf1(θL, x0)

∂x0
+ δG(θL)E[θL − θ|θ ≤ θL]q(x

f
1(θL, x0))

∂xf1(θL, x0)

∂x0
= 0.

From here, we that the first order condition for x0 can be written as

x0 =
(1− δ)E

[
q(xf1(θL, x0))1{θ≤θL} + q(xf1(θ, x0))1{θ>θL}

]
−E

[
q′(xf1(θ, x0))

∂xf
1 (θ,x0)
∂x0

1{θ>θL}

]
We conclude then that (x0, θL, δ) satisfy

x0 =
(1− δ)E

[
q(xf1(θL, x0))1{θ≤θL} + q(xf1(θ, x0))1{θ>θL}

]
−E

[
q′(xf1(θ, x0))

∂xf
1 (θ,x0)
∂x0

1{θ>θL}

]
δ = − x0

E[θL − θ|θ ≤ θL]

q′(xf1(θL))

q(xf1(θL))

x0E
[
q(xf1(θL, x0))1{θ≤θL} + q(xf1(θ, x0))1{θ>θL}

]
= I.

The final step is to characterize the conditions under which x∗0 > xmin
0 .

Lemma 7. Let x∗0 be a solution to the problem (40). If xmin
0 ≥ x∗1(E[θ]); then x∗0, while if xmin

0 <

x∗1(E[θ]) then x∗0 > xmin
0 .

Proof. We consider two cases: xmin
0 ≥ x∗1(E[θ]) and xmin

0 < x∗1(E[θ]). If xmin
0 ≥ x∗1(E[θ]), then
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Proposition 3 implies that for any x0 ∈ [xmin
0 , xmax

0 ], we have θL = θ̄ = 1, which means that

x∗0 = argmaxx0∈[xmin
0 ,xmax

0 ]W1(x0,E[θ]). As W1(x0,E[θ]) is a concave function (by Assumption 3)

achieving its maximum at x∗1(E[θ]) ≤ xmin
0 , it follows that x∗0 = xmin

0 . On the other hand, if

xmin
0 ≥ x∗1(E[θ]), then W1(x0,E[θ]) is increasing at x0 = xmin

0 , which means tha x∗0 > xmin
0

C Extensions

C.1 Short-Term Debt

Motivated by the solution in Section 4, we consider contracts (b, x0, x
L
1 ), where b is the amount

of short-term debt that matures at t = 1, x0 is the initial amount of long-term debt that matures

at t = 2, and xL1 is the limit in total debt due at t = 2 (which limits the amount of new issuance at

t = 1). As we did before, it is convenient to consider the problem in terms of the marginal types

that are constrained at t = 1. As before, we have the critical type θL satisfying xf1(θL) = xL1 – for

which the debt limit binds. Because the borrower is financially constrained, the following roll-over

constraint must be satisfied at t = 1:

q(x1(θ))(x1(θ)− x0) ≥ b.

This constraint specifies that the amount rise at t = 1 must be sufficient to pay back the maturing

short-term debt. It is possible to roll over the debt only if q(xL1 )(x
L
1 − x0) ≥ b. Moreover, if θ̄ = 1

(Assumption 5) we have that xf1(θ̄) − x0 = 0, which means that there is a marginal type θH such

that

q(xf1(θH))(xf1(θH)− x0) = b.

Hence, we can consider the following generalization of the problem in equation (23)

max
θL,θH∈Θ
θL≤θH

∫ θL

¯
θ

W1(x
f
1(θL), θ)dG(θ) +

∫ θH

θL

W1(x
f
1(θ), θ)dG(θ) +

∫ θ̄

θH

W1(x
f
1(θH), θ)dG(θ)

subject to

x0

[(
q(xf1(θL))− q(xf1(θH))

)
G(θL) +

∫ θH

θL

(
q(xf1(θ))− q(xf1(θH))

)
dG(θ)

]
+ xf1(θH)q(xf1(θH)) ≥ I.

(42)
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Let λ be the multiplier of the investment constraint. We can write

max
θL,θH∈Θ
θL≤θH

∫ θL

¯
θ

(
W1(x

f
1(θL), θ) + λx0q(x

f
1(θL))

)
dG(θ)+

∫ θH

θL

(
W1(x

f
1(θ), θ) + λx0q(x

f
1(θ))

)
dG(θ)

+

∫ θ̄

θH

(
W1(x

f
1(θH), θ) + λx0q(x

f
1(θH))

)
dG(θ) + λq(xf1(θH))(xf1(θH)− x0)

Dividing by 1 + λ and letting δ = 1/(1 + λ), we get that the previous problem is equivalent to

max
θL,θH∈Θ
θL≤θH

∫ θL

¯
θ

(
(1− δ)x0q(x

f
1(θL)) + δW1(x

f
1(θL), θ)

)
dG(θ)+

∫ θH

θL

(
(1− δ)x0q(x

f
1(θ)) + δW1(x

f
1(θ), θ))

)
dG(θ)

+

∫ θ̄

θH

(
(1− δ)x0q(x

f
1(θH)) + δW1(x

f
1(θH), θ))

)
dG(θ) + (1− δ)q(xf1(θH))(xf1(θH)− x0)

If we ignore the constraint θL ≤ θH , the first order condition for θL is the same as in the case

without short-term debt. So, we get the condition

x0
q′(xf1(θL))

q(xf1(θL))
+ δE[θL − θ|θ ≤ θL] = 0

Next, we consider the first-order condition for θH ; which is given by

∂ObjFun

∂θH
= xf

′

1 (θH)

{∫ θ̄

θH

(
x0q

′(xf1(θH)) + δ(θH − θ)q(xf1(θH))
)
dG(θ) + (1− δ)θHq(xf1(θH))

}

= (1−G(θH))xf
′

1 (θH)q(xf1(θH))

{
x0

q′(xf1(θH))

q(xf1(θH))
− δE[θ − θH |θ ≥ θH ] + (1− δ)

θH
1−G(θH)

}
= 0

where we have used the following relationships

xf1(θH)q′(xf1(θH)) + (1− θ)q(xf1(θH)) = (θH − θ)q(xf1(θH)) + x0q
′(xf1(θ))

(xf1(θH)− x0)q
′(xf1(θH)) + q(xf1(θH)) = θHq(xf1(θH))

From here, we get the first-order condition

x0
q′(xf1(θH))

q(xf1(θH))
− δE[θ − θH |θ ≥ θH ] + (1− δ)

θH
1−G(θH)

= 0
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Notice that if δ = 1, then

x0
q′(xf1(θH))

q(xf1(θH))
− δE[θ − θH |θ ≥ θH ] < 0,

which means that ∂ObjFun
∂θH

> 0 so θH = θ̄. On the other hand, if the financing constraint is binding

(that is, δ < 1) then (θL, θH , δ) satisfy

x0
q′(xf1(θH))

q(xf1(θH))
− δE[θ − θH |θ ≥ θH ] + (1− δ)

θH
1−G(θH)

= 0

x0
q′(xf1(θL))

q(xf1(θL))
+ δE[θL − θ|θ ≤ θL] = 0

x0

[
G(θL)q(x

f
1(θL)) +

∫ θH

θL

q(xf1(θ))dG(θ)−G(θH)q(xf1(θH))

]
+ xf1(θH)q(xf1(θH)) = I

The next step is to consider the first-order condition for x0. Let W0(x0) be the value function

of the optimization problem in equation (42). From here, we get

W ′
0(x0) = x0

∫ θH

θL

q′(xf1(θ))
∂xf1(θ)

∂x0
dG(θ) +

∂xf1(θL)

∂x0

∫ θL

¯
θ

(
x0q

′(xf1(θL)) + δ(θL − θ)q(xf1(θL))
)
dG(θ)

+
∂xf1(θH)

∂x0

{∫ θ̄

θH

(
x0q

′(xf1(θH)) + δ(θH − θ)q(xf1(θH))
)
dG(θ) + (1− δ)θHq(xf1(θH))

}

+ (1− δ)

[∫ θL

¯
θ

q(xf1(θL))dG(θ) +

∫ θH

θL

q(xf1(θ))dG(θ) +

∫ θ̄

θH

q(xf1(θH))dG(θ)− q(xf1(θH))

]

= x0

∫ θH

θL

q′(xf1(θ))
∂xf1(θ)

∂x0︸ ︷︷ ︸
<0

dG(θ)

+ (1− δ)

(q(xf1(θL))− q(xf1(θH))
)

︸ ︷︷ ︸
<0

G(θL) +

∫ θH

θL

(
q(xf1(θ))− q(xf1(θH))

)
︸ ︷︷ ︸

<0

dG(θ)

 < 0

From here, we get that the solution is x0 = 0, so xf1(θ) = x∗1(θ). Substituting back into the first
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order conditions for θL and θH we get that θL =
¯
θ and

x∗1(θH)q(x∗1(θH)) = I

δ =
θH

θH + E[θ − θH |θ ≥ θH ](1−G(θH))

Proof of Proposition 6

Proof. In the linear case, (x0, θL) solve

I =
x0(Y − x0)

c
E
[

1

2− θL
1{θ≤θL} +

1

2− θ
1{θ>θL}

]
x0

Y − x0
=

(1− δ)E
[

1
2−θL

1{θ≤θL} +
1

2−θ1{θ>θL}

]
E
[

1
2−θ1{θ>θL}

]
δ =

2− θL
E[θL − θ|θ ≤ θL]

x0
Y − x0

.

Let

F (θL) ≡ E
[

1

2− θL
1{θ≤θL} +

1

2− θ
1{θ>θL}

]
ρ(θL) ≡ E[θL − θ|θ ≤ θL].

Notice that as G(θ) is log-concave, the function ρ(θ) is increasing. We can write the system as

I =
x0(Y − x0)

c
F (θL)

x0
Y − x0

=
(1− δ)F (θL)

F (θL)− G(θL)
2−θL

δ =
2− θL
ρ(θL)

x0
Y − x0

.

From the first equation, we get

x20 − x0Y +
cI

F (θL)
= 0

The lowest root is given by

x0 =
Y −

√
Y 2 − 4cI

F (θL)

2
.
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Letting

ξ =
cI

Y 2
,

we can write

x0
Y

=
1−

√
1− ξ

F (θL)

2
.

The condition

E[θ] <
2
√
Y 2 − 4cI

Y +
√
Y 2 − 4cI

⇐⇒ E[θ] <
2
√
1− 4ξ

1 +
√
1− 4ξ

Substituting δ in the second equation, we get

x0
Y − x0

=

(
1− 2− θL

ρ(θL)

x0
Y − x0

)
F (θL)

F (θL)− G(θL)
2−θL

=⇒
x0
Y

=
F (θL)

2F (θL) +
2−θL
ρ(θL)

− G(θL)
2−θL

Combining both expressions for x0/Y , we get

1−
√

1− 4ξ
F (θL)

2
=

F (θL)

2F (θL) +
2−θL
ρ(θL)

− G(θL)
2−θL

=⇒

1

1 + 2F (θL)
2−θL
ρ(θL)

−G(θL)

2−θL

=

√
1− 4ξ

F (θL)

Letting

ω(θL) ≡
2F (θL)

2−θL
ρ(θL)

− G(θL)
2−θL

=
2F (θL)ρ(θL)(2− θL)

(2− θL)2 −G(θL)ρ(θL)
,

we can write the equation for θL as

f(θL, ξ) ≡
1

1 + ω(θL)
−

√
1− 4ξ

F (θL)
= 0
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At θL =
¯
θ, we get ρ(

¯
θ) = 0 so ω(

¯
θ) = 0 and F (

¯
θ) = E[1/(2− θ)] , which means that

f(
¯
θ, ξ) =

1

1 + ω(
¯
θ)

−

√
1− 4ξ

F (
¯
θ)

= 1−

√
1− 4ξ

F (
¯
θ)

> 0

On the other hand, if we take θL = θ̄ = 1, we get ρ(θ̄) = 1− E[θ] and F (θ̄) = 1/(2− θ̄) = 1 so

ω(θ̄) =
2(1− E[θ])

E[θ]

which yields

f(θ̄, ξ) =
1

1 + ω(θ̄)
−

√
1− 4ξ

F (θ̄)
=

E[θ]
2− E[θ]

−
√
1− 4ξ,

which is negative if

E[θ] <
2
√
1− 4ξ

1 +
√
1− 4ξ

which corresponds to the condition x∗1(E[θ]) > xmin
0 . Hence, we get that f(

¯
θ, ξ) > 0 and f(θ̄, ξ) < 0.

Differentiating with respect to ξ, we get

∂f(θ, ξ)

∂ξ
=

1

2F (θ)

(
1− 4ξ

F (θL)

)−1/2

> 0

It follows from Theorem 1 in Milgrom and Roberts (1994) that θL = min{θ ∈ Θ : f(θ, ξ) ≤ 0} is

non-decreasing in ξ. The next step is to look at the comparative statics for x0. As

x0
Y

=
1

2
− 1

2

√
1− 4ξ

F (θL)
,

the sign of the comparative statics for x0 depends on the sign of the comparative statics of√
1− 4ξ

F (θL)
. Moreover, when f(θL, ξ) = 0, we have

√
1− 4ξ

F (θL)
=

1

1 + ω(θL)
,
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so the comparative statics for x0 depends on the sign for ω′(θL). The derivative of ω(θL) is

ω′(θL) =
2F ′(θL)

2−θL
ρ(θL)

− G(θL)
2−θL

− 2F (θL)[
2−θL
ρ(θL)

− G(θL)
2−θL

]2 [− 1

ρ(θL)
− (2− θL)ρ

′(θL)

ρ(θL)2
− g(θL)

2− θL
− G(θL)

(2− θL)2

]

=
2F ′(θL)

2−θL
ρ(θL)

− G(θL)
2−θL

+
2F (θL)[

2−θL
ρ(θL)

− G(θL)
2−θL

]2 [ 1

ρ(θL)
+

(2− θL)ρ
′(θL)

ρ(θL)2
+

g(θL)

2− θL
+

G(θL)

(2− θL)2

]

The derivative F ′(θ) is

F ′(θL) =
G(θL)

(2− θL)2
> 0,

which means that ω′(θL) > 0, it follows then that[√
1− ξ

F (θL(ξ))

]′
=

[
1

1 + ω(θL(ξ))

]′
= − ω′(θL)

(1 + ω(θL))2
θ′L(ξ) ≤ 0,

so
∂

∂ξ

x0(ξ)

Y
≥ 0

C.2 Mandatory Prepayment

Proof of Proposition 8

Proof. Using the envelope theorem, the expected transfer at t = 1 is

m1(θ) = V1(x
+
1 (θ), x0, θ)− V̄1 +

∫ θ̄

θ
V2(x

+
1 (θ̃))dθ̃,

where V̄1 = V1(x
+
1 (θ̄), x0, θ̄)−m(θ̄). Substituting in the budget constraint and using integration by

parts, we get

E
[
x0q(x

+
1 (θ)) +m1(θ)

]
= E

[
W1(x

+
1 (θ), θ) + V2(x

+
1 (θ))

G(θ)

g(θ)

]
− V̄1

Moreover, noticing that

V1(x
+
1 (θ), x0, θ) = (x+1 (θ)− x0)q(x

+
1 (θ)) + θV2(x

+
1 (θ)),
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we can write the constraint (x+1 (θ)− x0)q(x
+
1 (θ)) ≥ m1(θ) as

V̄1 − θV2(x
+
1 (θ))−

∫ θ̄

θ
V2(x

+
1 (θ̃))dθ̃ ≥ 0

Notice that

m′
1(θ) =

V1(x
+
1 (θ), x0, θ)

∂x1︸ ︷︷ ︸
=(x+

1 (θ)−x0)q′(x
+
1 (θ))+(1−θ)q(x+

1 (θ))

x+
′

1 (θ) ≤ 0,

hence, the constraint m1(θ) ≥ 0 only needs to be enforced at θ = θ̄, were m1(θ̄) = V1(x
+
1 (θ̄), x0, θ̄)−

V̄1. If x+1 (θ) is non-increasing, then
∫ θ̄
θ V2(x

+
1 (θ̃))dθ̃ + θV2(z1(θ)) is increasing, so we only need to

enforece the constraint (x+1 (θ)− x0)q(x
+
1 (θ)) ≥ m1(θ) at θ = θ̄.

It follows that we can write the mechanism design problem as

max
x0,x

+
1 (θ),m1(θ)

E
[
W1(x

+
1 (θ), θ)

]
subject to

E
[
W1(x

+
1 (θ), θ) + V2(x

+
1 (θ))

G(θ)

g(θ)

]
− V̄1 ≥ I

V 1 ∈ [V1(x
+
1 (θ̄), x0, θ̄), θ̄V2(x

+
1 (θ̄))]

x+1 (θ) is non-increasing

The previous problem is feasible only if V1(x
+
1 (θ̄), x0, θ̄) ≥ θ̄V2(x

+
1 (θ̄)) which immeidately yields

x0 = x+1 (θ̄) and V 1 = θ̄V2(x
+
1 (θ̄)). Hence, we get

max
x0,x

+
1 (θ),m1(θ)

E
[
W1(x

+
1 (θ), θ)

]
subject to

E
[
W1(x

+
1 (θ), θ) + V2(x

+
1 (θ))

G(θ)

g(θ)

]
− θ̄V2(x

+
1 (θ̄)) ≥ I

x+1 (θ) is non-increasing

As we did before, it is convenient to define the shadow discount factor δ ≡ 1/(1 + λ), where λ is

the multiplier of the budget constraint. Then, we can write the optimization problem for given δ
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as

max
x+
1 (θ),m1(θ)

E
[
W1(x

+
1 (θ), θ) + (1− δ)

G(θ)

g(θ)
V2(x

+
1 (θ))

]
− (1− δ)θ̄V2(x

+
1 (θ̄))

subject to

x+1 (θ) is non-increasing

There is one constraint that we have not considered yet. The maximum possible mandatory pre-

payment is b(θ) = x0. This means that m1(θ) ≤ (1− q(x+1 (θ)))x0 which requires that

V1(x
+
1 (θ), x0, θ)− V̄1 +

∫ θ̄

θ
V2(x

+
1 (θ̃))dθ̃ ≤ (1− q(x+1 (θ)))x0

Substituting

V1(x
+
1 (θ), x0, θ) = W1(x

+
1 (θ), θ)− x0q(x

+
1 (θ))

we get

W1(x
+
1 (θ), θ)− V̄1 +

∫ θ̄

θ
V2(x

+
1 (θ̃))dθ̃ ≤ x0

Let

H(θ) ≡ W1(x
+
1 (θ), θ)− V̄1 +

∫ θ̄

θ
V2(x

+
1 (θ̃))dθ̃

So,

H ′(θ) = W ′
1(x

+
1 (θ), θ)x

+′

1 (θ)

Evaluated at

x+1 (θ) ≡ argmax
x1

{
W1(x1, θ) + (1− δ)

G(θ)

g(θ)
V2(x1)

}
we get

W ′
1(x

+
1 (θ), θ) = (1− δ)

G(θ)

g(θ)
q(x+1 ) > 0

so for θ ∈ [
¯
θ, θH ] we have H ′(θ) < 0. From here, we get that the exclusive financing solution can

be implemented if H(
¯
θ) ≤ x0, which means that

W1(x
+
1 (¯

θ),
¯
θ)− θHV2(x

+
1 (θH)) +

∫ θH

¯
θ

V2(x
+
1 (θ̃))dθ̃ ≤ x+1 (θH)

If this condition is satisfied, then the solution to the single-lender problem also solves the

problem with mandatory prepayment.
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If this condition is not satisfied, then we need to consider the problem

max
x+
1 (θ)

E
[
W1(x

+
1 (θ), θ) + (1− δ)

G(θ)

g(θ)
V2(x

+
1 (θ))

]
− (1− δ)θ̄V2(x

+
1 (θ̄))

subject to

W1(x
+
1 (θ), θ)− θ̄V2(x

+
1 (θ̄)) +

∫ θ̄

θ
V2(x

+
1 (θ̃))dθ̃ ≤ x+1 (θ̄)

x+1 (θ) is non-increasing

Let Γ(θ) be the cumulative multiplier of the constraint. Then, we can write the Lagrangian as

L(x1,Γ) = −(1− δ)θ̄V2(x
+
1 (θ̄)) +

∫ θ̄

¯
θ

[
W1(x

+
1 (θ), θ)g(θ) + (1− δ)G(θ)V2(x

+
1 (θ))

]
dθ

+
(
Γ(θ̄)− Γ(

¯
θ)
) (

x+1 (θ̄) + θ̄V2(x
+
1 (θ̄))

)
−
∫ θ̄

¯
θ

[
W1(x

+
1 (θ), θ) +

∫ θ̄

θ
V2(x

+
1 (θ̃))dθ̃

]
dΓ(θ).

Changing the order of integration∫ θ̄

¯
θ

∫ θ̄

θ
V2

(
x1(θ̃)

)
dθ̃dΓ(θ) =

∫ θ̄

¯
θ

Γ(θ)V2(x1(θ))dθ.

so we get

L(x1,Γ) = −(1− δ)θ̄V2(x
+
1 (θ̄)) +

∫ θ̄

¯
θ

[
W1(x

+
1 (θ), θ)g(θ) + ((1− δ)G(θ)− Γ(θ))V2(x

+
1 (θ))

]
dθ

+
(
Γ(θ̄)− Γ(

¯
θ)
) (

x+1 (θ̄) + θ̄V2(x
+
1 (θ̄))

)
−
∫ θ̄

¯
θ

W1(x
+
1 (θ), θ)dΓ(θ)

The directional derivative is

∇L(x1,Γ;h) =
[(
Γ(θ̄)− Γ(

¯
θ)− (1− δ)

)
θ̄V ′

2(x
+
1 (θ̄)) +

(
Γ(θ̄)− Γ(

¯
θ)
)]

h(θ̄)

+

∫ θ̄

¯
θ

[
W ′

1(x
+
1 (θ), θ)g(θ) + ((1− δ)G(θ)− Γ(θ))V ′

2(x
+
1 (θ))

]
h(θ)dθ −

∫ θ̄

¯
θ

W ′
1(x

+
1 (θ), θ)h(θ)dΓ(θ)
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Substituting V ′
2(x) = −q(x) we get

∇L(x1,Γ;h) =
[
−
(
Γ(θ̄)− Γ(

¯
θ)− (1− δ)

)
θ̄q(x+1 (θ̄)) +

(
Γ(θ̄)− Γ(

¯
θ)
)]

h(θ̄)

+

∫ θ̄

¯
θ

[
W ′

1(x
+
1 (θ), θ)g(θ)− ((1− δ)G(θ)− Γ(θ)) q(x+1 (θ))

]
h(θ)dθ −

∫ θ̄

¯
θ

W ′
1(x

+
1 (θ), θ)h(θ)dΓ(θ)

When the constraint is binding in an interval (θ′, θ′′) then it must be the case that

W ′
1(x

+
1 (θ), θ)x

+′

1 (θ) = 0,

so either x+1 (θ) = x∗1(θ) or x
+′

1 (θ) = 0. Suppose that in the binding region, we have x+1 (θ) = x∗1(θ).

Then, we must have that

W ′
1(x

∗
1(θ), θ)g(θ)− ((1− δ)G(θ)− Γ(θ)) q(x∗1(θ))−W ′

1(x
∗
1(θ), θ)Γ

′(θ) = 0.

Moreover, as W ′
1(x

∗
1(θ), θ) = 0, we obtain that

Γ(θ) = (1− δ)G(θ)

Let’s consider then a multiplier

Γ(θ) =

(1− δ)G(θ) if θ ∈ [
¯
θ, θ†]

(1− δ)G(θ†) if θ ∈ (θ†, θ̄]

The directional derivative becomes

∇L(x1,Γ;h) = (1− δ)
[
(1−G(θ†))θ̄q(x

+
1 (θ̄)) +G(θ†)

]
h(θ̄) + δ

∫ θ†

¯
θ

W ′
1(x

+
1 (θ), θ)g(θ)h(θ)dθ

+

∫ θ̄

θ†

[
W ′

1(x
+
1 (θ), θ)g(θ)− (1− δ) (G(θ)−G(θ†)) q(x

+
1 (θ))

]
h(θ)dθ

Let

ϕ(θ,x+
1 ) ≡ δW ′

1(x
+
1 (θ), θ)g(θ)1{θ≤θ†}

+
[
W ′

1(x
+
1 (θ), θ)g(θ)− (1− δ) (G(θ)−G(θ†)) q(x

+
1 (θ))

]
1{θ>θ†}
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and

Φ(θ;x+
1 ) ≡

∫ θ

¯
θ

ϕ(θ̃,x+
1 )dθ̃.

The directional derivative can be written as

∇L(x+
1 ,Γ;h) = (1− δ)

[
(1−G(θ†))θ̄q(x

+
1 (θ̄)) +G(θ†)

]
h(θ̄) +

∫ θ̄

¯
θ

Φ′(θ;x+
1 )h(θ)dθ

so after integrating by parts, we obtain that ∇L(x+
1 ,Γ;h) can be alternatively written as

∇L(x1,Γ;h) =
{
Φ(θ̄;x+

1 ) + (1− δ)
[
(1−G(θ†))θ̄q(x

+
1 (θ̄)) +G(θ†)

]}
h(θ̄)−

∫ θ̄

¯
θ

Φ(θ;x1)dh(θ)

Evaluated at the following policy.

• If θ ∈ [
¯
θ, θ†] then x+1 (θ) = x∗1(θ).

• If θ ∈ (θ†, θH ] then

x+1 (θ) = argmax
x1

{
W1(x1, θ) + (1− δ)

G(θ)−G(θ†)

g(θ)
V2(x1)

}

• If θ ∈ (θH , θ̄] then x+1 (θ) = x+1 (θH)

we get

Φ(θ;x+
1 ) = 1{θ>θH}

∫ θ

θH

[
W ′

1(x
+
1 (θH), θ)g(θ)− (1− δ) (G(θ)−G(θ†)) q(x

+
1 (θH))

]
dθ̃.

From here, we get that {θ†, θH} satisfy

∫ θ̄

θH

[
W ′

1(x
+
1 (θH), θ)g(θ)− (1− δ) (G(θ)−G(θ†)) q(x

+
1 (θH))

]
dθ = −(1− δ)

[
(1−G(θ†))θ̄q(x

+
1 (θ̄)) +G(θ†)

]
W1(x

+
1 (θ†), θ†)− θHV2(x

+
1 (θH)) +

∫ θH

θ†

V2(x
+
1 (θ̃))dθ̃ = x+1 (θH)

Finally, we need to verify the saddle point condition for L(x1,Γ), which amounts to verifying
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that L(x1,Γ) is concave in x1. Substituting Γ we get

L(x1,Γ) = −(1− δ)(1−G(θ†))θ̄V2(x
+
1 (θ̄)) + (1− δ)G(θ†)x

+
1 (θ̄)

+ δ

∫ θ†

¯
θ

W1(x
+
1 (θ), θ)g(θ)dθ +

∫ θ̄

θ†

[
W1(x

+
1 (θ), θ) + (1− δ)

(
G(θ)−G(θ†)

g(θ)

)
V2(x

+
1 (θ))

]
g(θ)dθ.

Under Assumption 4, we have that L(x1,Γ) above is concave in x1.
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