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Abstract

We study the design of monitoring in dynamic settings with moral hazard. An agent (e.g.
a firm) benefits from reputation for quality, and a principal (e.g. a regulator) can learn the
agent’s quality via costly inspections. Monitoring plays two roles: an incentive role, because
outcomes of inspections affect agent’s reputation, and an informational role because the princi-
pal directly values the information. We characterize the optimal monitoring policy inducing full
effort. When information is the principal’s main concern, optimal monitoring is deterministic
with periodic reviews. When incentive provision is the main concern, optimal monitoring is
random with a constant hazard rate.

JEL Classification: C73, D82, D83, D84.
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1 Introduction

Should we test students using random quizzes or pre-scheduled tests? Should a regulator inspect
firms for compliance at pre-scheduled dates, or should it use random inspections? For example,
how often and how predictably should we test the quality of schools, health care providers, etc.?
How should an industry self-regulate a voluntary licensing program, in particular when its members
are to be tested for compliance? What about the timing of internal audits to measure divisional
performance to allocate capital within organizations?

Monitoring is fundamental for the implementation of any regulation. It is essential for en-
forcement and, ultimately, for resource allocation. However, monitoring is costly in practice, and
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according to the OECD (2014), “regulators in many countries are increasingly under pressure to do
‘more with less.’ A well-formulated enforcement strategy, providing correct incentives for regulated
subjects can help reduce monitoring efforts and thus the cost for both business and the public
sector, while increasing the efficiency and achieving better regulatory goals.”

In many cases, monitoring outcomes are public and can thus have a significant impact on a
firm’s reputation. Regulators can exploit this reputational concern when designing their monitor-
ing strategies to strengthen firms’ incentives to provide quality. In essence, monitoring is a form of
information acquisition. The information that a regulator collects via monitoring serves multiple
purposes: not only it provides valuable information that can help the regulator improve the allo-
cation of resources in the economy, but it also is an important incentive device when agents are
concerned about their reputation. As such, monitoring is often a substitute to monetary rewards.1

The role of information and reputation is particularly important in organizations where explicit
monetary rewards that are contingent on performance are not feasible. As Dewatripont et al. (1999)
point out in their study of incentives in bureaucracies, in many organizations incentives arise not
through explicit formal contracts but rather implicitly through career concerns. This can be the
case because formal performance-based incentive schemes are difficult to implement due to legal,
cultural, or institutional constraints. Similarly, regulators may be limited in their power to impose
financial penalties on firms and may try to use market reputation to discipline the firms, and fines
might be a secondary concern for firms. We believe that our model captures optimal monitoring
practices in these situations in which fines and transfers are of second order compared to reputation.

Most real-life monitoring policies fall into one of two classes: random inspections or deterministic
inspections – namely inspections that take place at pre-announced dates, for example, once a year.
At first, neither of these policies seem optimal. A policy of deterministic inspections may induce
“window dressing” by the firm: the firm has strong incentives to put in effort toward the inspection
date, merely to pass the test, and weak incentives right after the inspection, since the firm knows
that it will not be inspected in the near future. On the other hand, random inspections might
be wasteful from an information acquisition standpoint. Random inspections are not targeted and
may fail to identify cases in which the information acquired is more valuable.

A central prediction of our analysis is that periodic reviews and random Inspections are optimal
in different environments since they serve distinct purposes.

Random inspections are efficient in providing incentives, and hence are optimal in circumstances
where moral hazard considerations are important. The severity of moral hazard depends on the
difficulty of providing quality and its persistence. These factors affect the prevalence of random
inspections in practice. For example, restaurant hygiene monitoring programs typically rely on
random inspections2

1For example, Eccles et al. (2007) assert that “in an economy where 70% to 80% of market value comes from
hard-to-assess intangible assets such as brand equity, intellectual capital, and goodwill, organizations are especially
vulnerable to anything that damages their reputations,” suggesting that our focus on the provision of incentives via
reputation captures first-order trade-offs in such markets.

2Or else a restaurant could improve its hygiene conditions merely to pass a pre-announced inspection but pay
less attention to hygiene when inspections are not expected. Jin and Leslie (2003) provides evidence of the positive
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Deterministic reviews, by contrast, are the most efficient when an essential reason for inspections
is learning to improve decisions and incentives to provide quality are relatively less important.
This seems to be a good description in case of safety inspections where learning about a safety
hazard is crucial for the monitor to prevent a disaster. Deterministic reviews are thus common
for safety monitoring systems such as those managed by the Federal Aviation Administration3 Our
results indicate that deterministic reviews are particularly useful when the monitored agents have
a relatively mild moral hazard problem (for example, because they care directly about maintaining
quality) and when the direct value of information is high.

A different example of the variety of timing of tests is familiar from the educational institutions,
where professors use both random quizzes and pre-announced tests. Consistent with our model,
tests that could be easy to prepare for on a short notice (but with such preparation being not very
productive) are often performed as “random quizzes” or “cold calls.” On the other hand, tests that
require a deeper understanding of the material and hence more sustained studying effort but are
important for evaluating students and for giving them guidance about what other choices to make,
are often scheduled.

In this paper, we study a model with investment in quality and costly inspections. The objective
is to identify the trade-offs involved in the design of optimal dynamic monitoring systems. Our
main result (Theorem 1) is that when both incentive provision and learning are important, the
optimal policy combines the previous two features that we commonly observe in practice. It relies
on deterministic reviews to periodically acquire information and combine it with random inspections
to provide incentives at the lowest possible cost. In principle, we would expect the optimal policy
to be complex, fine-tuning the probability of monitoring over time. However, we show that the
optimal policy is simple, and can be easily implemented by dividing firms into two sets: the recently-
inspected ones and the rest. Firms in the second set are inspected randomly, in an order that is
independent of their time on the list (that is, with a constant hazard rate). Firms in the first set
are not inspected at all. They remain in the first set for a deterministic amount of time (that may
depend on the results of the last inspection). When that “holiday” period expires, the principal
inspects a fraction of the firms and transfers the remaining fraction to the second set.

A policy with a constant hazard rate minimizes the cost of inspections subject to the incentive
compatibility constraints. However, when learning is important, random policies are inefficient
because inspections might be performed when there is little uncertainty about the agent’s type, in
which case learning is not as valuable yet. Then, the benefit of delaying inspections until the value
of learning is large enough is greater than the associated increase in cost caused by the departure
from the constant hazard rate policy. However, over time, in the absence of inspections, the value
of learning stabilizes, and the trade-off is dominated by cost minimization. This explains why the
optimal policy eventually shifts towards a constant hazard rate.

The pure deterministic and pure random policies are special cases of our policy. When all firms

impact of random inspection on restaurant hygiene.
3The Federal Aviation Administration regulates all aspects of civil aviation in that nation. The FAA mandates

periodic aircraft inspections. For example, ‘A checks’ happen every 400-600 flight hours (see FAR 91.409b).
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are inspected at the end of the “holiday” period, the policy is deterministic; when the duration
of the “holiday” period shrinks to zero, the policy becomes purely random. We show when these
extreme policies can be optimal. When moral hazard is weak, the optimal policy tends to be
deterministic. On the other hand, when information gathering has no direct value to the principal,
the optimal policy is purely random.

In our model, an agent/firm provides a service and earns profits that are proportional to its
reputation, defined as the public belief about the firm’s underlying quality. Quality is random
but persistent. It fluctuates over time with transitions that depend on the firm’s private effort. A
principal/regulator designs a dynamic monitoring policy, specifying the timing of costly inspections
that fully reveal the firm’s current quality. The regulator’s flow payoff is convex in the firm’s
reputation, capturing the possibility the regulator values information per se. We characterize the
monitoring policy that maximizes the principal’s expected payoff (that includes costs of inspections)
subject to inducing full effort by the firm. We extend our two-type benchmark model by considering
the case in which quality follows a mean-reverting Ornstein-Uhlenbeck process, and the principal
has mean-variance preferences over posterior beliefs. We show that the optimal policy belongs to
the same family as that in the binary case and provide additional comparative statics.

In some markets, inspections play additional roles that our model does not capture. For exam-
ple, regulators may want to test schools to identify the source of the success of the best performers
in order to transfer that knowledge to other schools. Inspections could also be used as direct
punishments or rewards – for example, a regulatory agency may punish a non-compliant firm by
inspecting it more, or a restaurant guide may reward good restaurants by reviewing it more often.
In the last section, we discuss how some of these other considerations could qualitatively affect our
results. However, our general intuition is that these additional considerations (such as dynamic
punishments, or direct monetary incentives) that make the moral hazard less severe or the direct
value of information higher, should lead the optimal policy to favor deterministic monitoring over
randomization.

1.1 Related Literature

There is a large empirical literature on the importance of quality monitoring and reporting systems.
For example, Epstein (2000) argues that public reporting on the quality of health care in the U.S.
(via quality report cards) has become the most visible national effort to manage the quality of
health care. This literature documents the effect of quality report cards across various industries.
Some examples include restaurant hygiene report cards (Jin and Leslie, 2009), school report cards
(Figlio and Lucas, 2004), and a number of disclosure programs in the health care industry. Zhang
et al. (2011) note that during the past few decades, quality report cards have become increasingly
popular, especially in areas such as health care, education, and finance. The underlying rationale
for these report cards is that disclosing quality information can help consumers make better choices
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and encourage sellers to improve product quality.4

Our paper is closely related to previous work by Lazear (2006) and Eeckhout et al. (2010),
who study the optimal allocation of monitoring resources in static settings and without reputation
concerns. In particular, Lazear concludes that monitoring should be predictable/deterministic
when monitoring is very costly; otherwise, it should be random. Both papers are concerned with
maximizing the level of compliance given a limited amount of monitoring resources.

Another related literature, initiated by Becker (1968), looks at the deterrence effect of policing
and enforcement and the optimal monitoring policy to deter criminal behavior in static settings.5

In a dynamic context, Kim (2015) compares the level of compliance with environmental norms
induced by periodic and exponentially distributed inspections when firms that fail to comply with
norms are subject to fines. Our work is also related to the literature looking at inspections games
with exogenous fines, in particular, the work by Solan and Zhao (2019), who look at a repeated
inspection game in which there is a capacity constraint on the number of firms that the regulator
can inspect in a given period, and firms are fined if they are found in violation of the rules. In
their setting, it is not possible to provide full compliance, and the objective of the regulator is to
maximize compliance over time.

We build on the investment and reputation model of Board and Meyer-ter-Vehn (2013), where
the firm’s quality type changes stochastically. Unlike that paper, we analyze the optimal design
of monitoring policy while they take the information process as exogenous (in their model, it is a
Poisson process of exogenous news). They study equilibrium outcomes of a game, while we solve a
design problem (design of a monitoring policy). Moreover, we allow for a principal to have convex
preferences in perceived quality, so that information has direct benefits, an assumption that does
not have a direct counterpart in their model. Finally, we allow for a richer evolution of quality:
in Board and Meyer-ter-Vehn (2013) it is assumed that if the firm puts full effort, quality never
drops from high to low, while in our model even with full effort quality remains stochastic.6 At the
end of the paper, we also discuss that some of our results can be extended beyond the Board and
Meyer-ter-Vehn (2013) model of binary quality levels, and we also consider the design of optimal
monitoring when some information comes exogenously.

Finally, our paper is somewhat related to the literature that has explored the design of rating
mechanisms or reputation systems more broadly. For example, Dellarocas (2006) studies how the
frequency of reputation profile updates affects cooperation and efficiency in settings with noisy
ratings. Horner and Lambert (2016) study the incentive provision aspect of information systems
in a career concern setting similar to Holmström (1999). In their setting, acquiring information

4Admittedly, while some existing studies provide evidence in support of the effectiveness of quality report cards,
other studies have raised concerns by showing that report cards may induce sellers to game the system in ways that
hurt consumers. For example, Hoffman et al. (2001) study the results from the Texas Assessment of Academic Skills
testing and found some evidence that this program has a negative impact on students, especially low-achieving and
minority students. While our model does not have the richness to address all such issues, it is aimed at contributing
to our understanding of the properties of good monitoring programs.

5See for example , Polinsky and Shavell (1984), Reinganum and Wilde (1985), Mookherjee and Png (1989),
Bassetto and Phelan (2008), Bond and Hagerty (2010).

6Board and Meyer-ter Vehn (2014) allows quality to be stochastic with full effort.
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is not costly and does not have value per se. See also Ekmekci (2011), Kovbasyuk and Spagnolo
(2016), and Bhaskar and Thomas (2017) for studies of optimal design of rating systems in different
environments.

2 Setting

We start by describing the general setting. Then, we provide a discussion of potential applications
and some specific examples of how the model can be micro-founded to study them.

Agents, Technology, and Effort: There are two players: a principal and a firm/agent. Time
t ∈ [0,∞) is continuous. The firm sells a product whose quality changes over time. We model
the evolution of quality as in Board and Meyer-ter-Vehn (2013): Initial quality is exogenous and
commonly known. At time t, the quality of the product is θt ∈ {L,H}, and we normalize L = 0

and H = 1. Quality changes over time and is affected by the firm’s effort. At each time t, the firm
makes a private effort choice at ∈ [0, ā], ā < 1. Throughout most of the paper, we assume that
when the firm chooses effort at quality switches from low to high with intensity λat and from high
to low quality with intensity λ(1 − at). Later we illustrate how the analysis can be extended to
the case in which quality θt can take on a continuum of values and effort affects the drift of the
evolution of quality. Note that we bound at below one, so unlike Board and Meyer-ter-Vehn (2013),
quality is random even if the firm exerts full effort. The steady-state distribution of quality when
the firm puts in full effort is Pr(θ = H) = ā.

Strategies and Information: At time t, the principal can inspect the quality of the product, in
which case θt becomes public information (we can think of the regulator as disclosing the outcome
of inspections to the public. A commitment to truthful disclosures by the regulator is optimal in
our setting, given the linearity of the firm payoffs.)

A monitoring policy specifies an increasing sequence of inspections (Tn)n≥1 times.7 Let Nt ≡
sup{n : Tn ≤ t} be the counting process associated with (Tn)n≥0, and denote the natural filtration
σ(θs, Ns : s ≤ t) by F = (Ft)t≥0. In addition, let FP = (FP

t )t≥0 be the smaller filtration σ(θTn , Ns :

n ≤ Nt, s ≤ t) which represents the information available to the principal.8 The time elapsed
between inspections is denoted by τn ≡ Tn − Tn−1, so a monitoring policy can be represented by a
sequence of cumulative density functions, Fn : R+∪{∞} → [0, 1] measurable with respect to FP

Tn−1

specifying the distribution of τn conditional on the information at the inspection date Tn−1. The
principal commits at time 0 to the full monitoring policy.

We assume that current quality is always privately known by the firm, so its information is given
by F, but as discussed below, our results extend to the case where the firm does not observe quality

7We implicitly assume the principal discloses the quality after the inspection. This is optimal: the principal would
never benefit from withholding the quality information because that would weaken the incentive power of monitoring.

8Notice that the principal filtration includes the complete history of inspection outcomes and dates.
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which in some applications is more realistic. A strategy for the firm is an effort plan a = (at)t≥0

that is predictable with respect to F.

Reputation and Payoffs: We model the firm’s payoffs as driven by the firm’s reputation. In
particular, denote the market’s conjecture about the firm’s effort strategy by ã = (ãt)t≥0. Rep-
utation at time t is given by xt ≡ Eã(θt|FP

t ) where the expectation is taken with respect to the
measure induced by the conjectured effort, ã. In words, reputation is the market’s belief about the
firm’s current quality. It evolves based on the market’s conjecture about the firm’s strategy and
inspection outcomes.

The firm is risk-neutral and discounts future payoffs at rate r > 0. For tractability we assume
that the firm’s payoff flow is linear in reputation.9 The marginal cost of effort is k, hence the firm’s
expected payoff at time t is

Πt = Ea

[∫ ∞

t
e−r(s−t)(xs − kas)ds

∣∣∣Ft

]
.

In the absence of asymmetric information, the maximal effort is optimal for the firm if and only
if λ/(r + λ) ≥ k. We assume throughout the analysis that this condition is satisfied.

The principal discounts future payoffs at the same rate r as the firm. The principal’s flow
payoff is given by a strictly increasing twice continuously differentiable convex function of the
firm’s reputation, u(·). As mentioned previously, the convexity of u captures the possibility that
the principal values the information about the firm’s quality.

Also, monitoring is costly to the principal: the lump-sum cost of an inspection is c. Hence, the
principal’s payoff is

Ut = Eã

∫ ∞

t
e−r(s−t)u(xs)ds−

∑
Tn≥t

e−r(Tn−t)c
∣∣∣FP

t

 .

Note that the cost of effort is not part of the principal’s payoff. In some applications, it may be
more natural to assume the principal internalizes that cost, and then we would subtract −kãs from
the welfare flows. However, since we focus on policies that induce full effort (at = ā for all t), our
analysis does not depend on how the principal accounts for the firm’s cost of effort (of course, the
cost still matters indirectly since it affects agent’s effort incentives). Finally, we assume that, for
any belief xt, the principal values effort at least as much as the firm, which means that u′(0) ≥ 1,

which guarantees that full effort is optimal in the first best.
9One interpretation is that the firm sells a unit flow of supply to a competitive market where consumers’ willingness

to pay is equal to the expected quality so that in every instance price is equal to the firm’s current reputation. We
discuss alternative interpretations in the next section.
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Incentive Compatibility and Optimal Policies. We seek to characterize monitoring poli-
cies that maximize the principal’s payoff among those inducing full effort.10 Since the firm’s best
response depends both on the monitoring policy and the principal’s conjecture, ã, incentive com-
patibility deserves some discussion.

First, we define what it means for an effort policy to be consistent with an equilibrium for a
given monitoring policy:

Definition 1. Fix a monitoring policy (Fn)n≥1. An equilibrium is a pair of effort and conjectured
effort (ã, a) such that for every history on the equilibrium path:11

1. xt is consistent with Bayes’ rule, given (Fn)n≥1 and ã.

2. a maximizes Π.

3. ã = a.

Second, we define incentive compatibility of the monitoring policy by requiring existence of an
equilibrium with full effort for that policy and define the optimal policy accordingly.

Definition 2. A monitoring policy (Fn)n≥1 is incentive compatible if under that policy there exists
an equilibrium with at = ā. A monitoring policy is optimal if it maximizes U over all incentive
compatible monitoring polices.

In other words, we assume the firm chooses full effort whenever there exists an equilibrium given
(Fn)n≥1 that implements full effort (even if there are multiple equilibria).

An optimal policy faces the following trade-off: First, the policy seeks to minimize the cost
of inspections subject to maintaining incentives for effort provision (one can always provide in-
centives for full effort by implementing very frequent inspections, but that would be too costly).
Second, since the principal values information per se, the policy solves the real-option-information-
acquisition problem of deciding when to incur the cost c to learn the firm’s current quality and
thus benefit from superior information.

Some comments are in order. First, in some applications, the agent and principal might also
care about true quality θt, in addition to reputation. For example, a school manager may care
about how many students the school attracts thanks to its reputation and about the welfare of
those students, which in turn depends on the school’s actual quality. The current specification of
the principal’s payoff already incorporates this possibility.12 When the agent’s preferences are a
quasilinear combination of θt and xt the analysis extends directly to this more general case (see
Remark 1).

10One interpretation is that we implicitly assume the parameters of the problem are such that despite agency
problems, it is optimal for the principal to induce full effort after all histories. Another motivation for focusing on
full effort is that in some applications, for example, in the case of schools, punishing the firms by implementing low
effort might not be practical. We discuss this assumption further at the end of the paper.

11We could define a third player in the model, the market, and then define the equilibrium as a Perfect Bayesian
equilibrium of the game induced by the policy (Fn)n≥1. We hope our simpler definition does not create confusion.

12If the principal payoff is ũ(θt, xt) then the expected payoff is u(xt) = xtũ(H,xt) + (1− xt)ũ(L, xt).
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Second, we shall study both the case when the principal payoff u(·) is linear and that when it
is strictly convex. Again, such convexity of the principal’s flow payoff captures situations in which
information about quality affects not only prices but also allocations – for example, information
may improve the matching of firms and consumers by allowing relocation of consumers from low-
quality to high-quality firms – and the principal may internalize consumer surplus. Throughout
the paper we ignore the use of monetary transfers –beyond transfers that are proportional to the
current reputation.13 In some settings, other forms of performance-based compensation can be used
to provide incentives, but in many cases, divisional contracts are simple, and earnings proportional
to the size of the division may be the main driver of the manager’s incentives. Graham, Harvey,
and Puri (2015) find evidence that a manager’s reputation has an important role in internal capital
allocation. In addition, the use of career concerns as the main incentive device also captures the
allocation of resources in bureaucracies as in Dewatripont, Jewitt, and Tirole (1999). The role
of financial incentives in government agencies is much more limited than in private firms where
autonomy, control, and capital allocation driven by career concerns seem more preponderant for
worker’s motivation.

Third, we assume the principal can commit to a monitoring policy. There are many possible
sources of such a commitment. In some instances, commitment is achieved by regulation (for
example, in case of aircraft safety, the FAA requires that an aircraft must undergo an annual
inspection every 12 calendar months to be legal to operate). In other instances, commitment can
be supported by relational contracts. That is, punishing the principal via inferior continuation
equilibrium if he deviates. For example, it would call for no more inspections and hence induce no
effort. Such commitment via relational concerns would be straightforward in case of deterministic
inspections. In case of random inspections, if the principal interacts with many agents, it would be
able to commit to inspecting a certain fraction of them in every period to approximate the optimal
random policy we describe. The non-commitment case is beyond the scope of this paper.14

2.1 Examples

To further motivate the model, we turn to three applications. They illustrate how the firm and
principal payoffs can be micro-founded.

Example 1: School Monitoring. Here we study monitoring of school quality in the presence
of horizontal differentiation. Specifically, consider a Hotelling model of school choice with two
schools located at opposite extremes of the unit line: School A, with a known constant quality and
school B with unknown and evolving quality. The evolution of the quality of school B depends
on the school’s hidden investment and is unobservable to the public unless a regulator monitors it.
Students are distributed uniformly over the unit line. Both schools charge the same tuition and
students choose them based on location and perceived quality differences. Assume the quality of

13See Motta (2003) for a capital budgeting model driven by career concerns along these lines.
14For analysis of costly disclosure that is triggered by the firm (without commitment), see Marinovic et al. (2018).
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school A is known to be low. If a student is located at location ℓ ∈ [0, 1] she derives a utility of
attending school A equal to

vA (ℓ) = −ℓ2.

On the other hand, the utility of attending school B depends on its reputation and is given by

vB (xt, ℓ) = xt − (1− ℓ)2

Given reputation xt, students above ℓ∗(xt) =
1−xt
2 choose school B. Hence the demand for school

B is:
1− ℓ∗(xt) =

1 + xt
2

.

Now, assume that for each attending student, the schools receive a transfer of $1 from the govern-
ment and normalize marginal costs to zero. Hence, the profit flows of schools A and B are

πA(xt) = ℓ∗(xt) =
1− xt

2

πB(xt) = (1− ℓ∗(xt))− kat =
1 + xt

2
− kat.

Conditional on school B′s reputation xt, total students’ welfare is

w(xt) =

∫ ℓ∗(xt)

0
vA(ℓ)dℓ+

∫ 1

ℓ∗(xt)
vB(xt, ℓ)dℓ

=
1

4
x2t +

1

2
xt −

1

12

Finally, suppose that the principal’s (i.e., the school regulator) payoff in each period t is a weighted
average of the students’ and schools’ welfare:

u(xt) = αw(xt) + (1− α)(πA(xt) + πB(xt)),

where α is the relative weight attached to students’ utility by the principal. Note that the principal’s
flow utility u(xt) is an increasing and convex function of reputation, even though the sum of the
schools’ profits does not depend on it (since the two schools just split the subsidy per student,
reputation only affects the distribution of profits). The convexity of u reflects here that better
information about the quality of B leads to a more efficient allocation of students and the principal
internalizes their welfare.

Example 2: Quality Certification. Consider a version of the classic problem of moral hazard
in quality provision, as studied by the reputation literature (see, e.g., Mailath and Samuelson
(2001)). There are two firms. The product of firm 2 (good 2) has a known quality x2 ∈ (0, 1),
while the product of firm 1 (good 1) – which is the firm we analyze– has random quality that is
either high or low, θ1 ∈ {0, 1} with reputation denoted by x1. Each firm produces a unit (flow) of
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the good per period. There are N ≥ 3 buyers with types qj that represent a buyer’s preference for
quality: Each buyer j has type qj with q1 > q2 = q3 = ... = q, and if agent j gets the good with
expected quality x and pays p, his consumer surplus is

qjx− p.

Prices and allocations are set competitively as follows. When x1 < x2 the efficient allocation is that
buyer 1 gets good 2 and any of the other buyers gets good 1. Competition between the less-efficient
buyers drives the price of good 1 to p1 = qx1 (these buyers get no surplus), while the price of good
2 is the smallest price such that agents j ≥ 2 do not want to outbid agent 1 for it:

qx1 − p1 = qx2 − p2 ⇒ p2 = qx2.

When x1 > x2, then the efficient allocation is that agent 1 gets good 1, and, by analogous reasoning,
competition implies that prices are p2 = qx2 and p1 = qx1: Therefore, for all levels of x1 the price
of the output of firm 1 is p1 = qx1. Suppose the planner wants to maximize total social surplus.
Because the less efficient buyers compete away all the surplus, the social surplus is

TS = p1 + p2 + CS1,

where CS1 is the surplus of agent 1, and so we have that

CS1 =

{
q1x2 − p2 if x1 < x2

q1x1 − p1 if x1 ≥ x2,

which means that the surplus flow per period is

u (x1) =

{
qx1 + q1x2 if x1 < x2

q1x1 + qx2 if x1 ≥ x2.

The surplus is a convex function because q1 > q: Intuitively, while prices are linear in expected
quality (reputation), consumer surplus is convex because reputation affects the allocation of goods
– information about the true quality of product 1 allows to allocate it more efficiently among the
agents.15 The principal’s preferences are linear if q1 = q because information has no allocative role.
This corresponds to the setting in Mailath and Samuelson (2001) and Board and Meyer-ter-Vehn
(2013) who consider a monopolist selling a product to a competitive mass of buyers.

Example 3: Capital Budgeting and Internal Capital Markets. In the next example we
show how the model can be applied to investment problems such as capital budgeting and capital

15In this example u (x) is piece-wise linear. It is an artifact of having two types of agents and two products since
there are only two possible allocations. It is possible to construct a model with a continuum of agent types and
continuum of goods where the allocation changes continuously in x and the resulting consumer surplus is strictly
convex.
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allocation. An extensive literature in finance studies capital budgeting with division managers who
have empire building preferences.16 As in Stein (1997) and Harris and Raviv (1996), we assume
managers enjoy a private benefit from larger investments. In particular, assume the manager enjoys
a private benefit at time t of b ∗ ιt from investment ιt.17 Projects arrive according to a Poisson
process Ñt with arrival intensity µ. The manager’s expected payoff is

Πt = Ea

[∫ ∞

t
e−r(s−t)(bιsdÑs − kasds)

∣∣∣Ft

]
.

Similarly, the division’s cash-flows follow a compound Poisson process (Yt)t≥0 given by

Yt =

Ñt∑
i=1

f(θti , ιti),

where f(θt, ιt) = θt − γ(ιt − θt)
2 is a quadratic production function similar to the one used in

Jovanovic and Rousseau (2001). At each time t that a project arrives, the headquarter decides how
much resources allocate to the division, and the optimal investment choice of the headquarter is to
allocate ιt = argmaxιE[f(θt, ι)|FP

t− ] resources to the division, so ιt = xt.18 Hence, the manager’s
expected flow payoff is

πt = µbxt − kat,

and the principal’s expected flow payoff is

u(xt) = µ
(
xt − γVar

[
θt|FP

t

])
= µ

(
(1− γ)xt + γx2t

)
.

In the baseline model, we assume that monitoring is the only source of information about θ available
to the headquarter. In this application it is natural to assume that the headquarter also learns
about the current productivity once the cash-flows arrive. We study the possibility of exogenous
news arrivals in the appendix.

3 Incentive Compatible Policies

In the next section, we derive optimal monitoring policies. To that end, in this section, we charac-
terize necessary and sufficient conditions for a monitoring policy to be incentive compatible.

16Some examples are found in Hart and Moore (1995), Harris and Raviv (1996), and Harris and Raviv (1998).
Motta (2003) studies a model of capital budgeting with empire building preferences and career concerns.

17Coefficient b can be also interpreted as incentive pay that is proportional to the size of the allocation to prevent
other agency problems, such as cash diversion, not captured explicitly by our model.

18Note that the allocation in period t is made before the realization of the cash-flow (the Poisson process), as
captured by FP

t− . Technically, we could write that profits depend on ιt− , but write simply ιt since the timing of the
game should be well understood.
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Consider the firm’s continuation payoff under full effort at time Tn+1:

ΠTn+1 = Eā

[∫ ∞

Tn+1

e−r(t−Tn+1)(xt − kā)dt
∣∣∣FTn+1

]

=

∫ ∞

Tn+1

e−r(t−Tn+1)
(
Eā[xt|FTn+1 ]− kā

)
dt.

This expression represents the expected present value of the firm’s future revenues net of effort
costs. A key observation is that the law of iterated expectations and the Markov nature of the
quality process imply that Eā[xt|FTn+1 ] = Eā[θt|θTn+1 ], and moreover:

Eā[θt|θTn+1 ] = θTn+1e
−λ(t−Tn+1) + ā

(
1− e−λ(t−Tn+1)

)
.

Therefore, under any incentive-compatible monitoring policy, if the firm is inspected at Tn+1 and
has quality θTn+1 = θ, then its continuation payoff is:

Π(θ) ≡ ā

r
+

θ − ā

r + λ
− āk

r
. (1)

The first term is the NPV of revenue flows given steady-state reputation; the second is the deviation
from the steady-state flows given that at time Tn+1 the firm re-starts with an extreme reputation,
and the last term is the NPV of effort costs. Importantly, since the firm’s payoffs are linear
in reputation and the firm incurs no direct cost of inspections, these continuation payoffs are
independent of the future monitoring policy. That dramatically simplifies the characterization of
incentive compatible policies. Moreover, because the continuation value at time Tn+1 is independent
of the previous history of effort (it depends on effort only indirectly via θTn+1), we can invoke the
one-shot deviation principle to derive the agent’s incentive compatibility constraint.

Consider the firm’s effort incentives. Effort may affect the firm’s payoff by changing the outcome
of future inspections. The expected marginal benefit of exerting effort over an interval of size dt is

E[λe−(r+λ)(Tn+1−t)|Ft](Π(H)−Π(L))dt,

where the expectation is over the next inspection time, Tn+1. This is intuitive: having high quality
rather than low quality at the inspection time yields the firm a benefit Π(H) − Π(L). Also, a
marginal increase in effort leads to higher quality today with probability (flow) λdt. However, to
reap the benefits of high quality, the firm must wait till the next review date, Tn+1, facing the
risk of an interim (i.e., before the inspection takes place) drop in quality. Hence, the benefit of
having high quality at a given time must be discounted according to the interest rate r, and the
quality depreciation rate λ. On the other hand, the marginal cost of effort is kdt. Combining
these observations and our derivation of Π(H)−Π(L), we can express the necessary and sufficient
condition for full effort to be incentive compatible as follows.
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Proposition 1. Full effort is incentive compatible if and only if for all n ≥ 0,

E
[
e−(r+λ)(Tn+1−t)

∣∣Ft

]
≥ q ∀t ∈ [Tn, Tn+1),

where q ≡ k(r+λ)
λ .

This condition states that for a monitoring policy to be incentive compatible next expected
discounted inspection date E

[
e−(r+λ)(Tn+1−t)

]
has to be sufficiently high. Future monitoring affects

incentives today because effort has a persistent effect on quality, so shirking today can lead to a
persistent drop in quality that can be detected by the principal in the near future. Therefore, what
matters for incentives at a given point in time is not just the monitoring intensity at that point
but the cumulative discounted likelihood of monitoring in the near future. Future inspections are
discounted both by r and the switching intensity λ because effort today matters insofar as quality
is persistent.

Finally, notice that the incentive compatibility constraint is independent of the true quality of
the firm at time t, so the incentive compatibility condition is the same if the firm does not observe
the quality process. Therefore, the optimal monitoring policy is the same whether the firm observes
quality or not. The incentive compatibility constraint is independent of θt because effort enters
linearly in the law of motion of θt, and the cost of effort is independent of θt, which means that the
marginal benefit and marginal cost of effort are independent of θt.

Remark 1. Proposition 1 can be extended to the case in which the agent also cares about quality
and has a quasilinear flow payoff v(θt) + xt. In this case, the incentive compatibility constraint
becomes

E
[
e−(r+λ)(Tn+1−t)

∣∣Ft

]
≥ q − (v(1)− v(0)) ∀t ∈ [Tn, Tn+1)

All the results extend to this case by setting the cost of effort equal to k − λ(v(1)− v(0))/(r + λ).

4 Optimal Monitoring Policy

We now describe an optimal monitoring policy that induces full effort. To do so, we first optimize
over the distribution of the first inspection time, taking as given some continuation payoffs for the
principal. We then discuss how one can obtain via a recursive computation the actual continuation
payoffs under the optimal policy. As we show, the qualitative features of the optimal policy do
not depend on the continuation payoffs. The optimal policy belongs to a two-dimensional class
(with one parameter for each possible outcome of the last inspection), and that greatly simplifies
the computation of continuation payoffs under the optimal policy. The next theorem provides a
general characterization of the optimal monitoring policy, and it is the main result of this paper.

Theorem 1 (Optimal Monitoring Policy). Let τ bind be the largest time such that deterministic
monitoring at that time is incentive compatible, which is given by e−(r+λ)τbind

= q, and let F ∗
θ :
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R+ × {L,H} → [0, 1] be an optimal policy following and inspection in which θTn = θ. An optimal
policy F ∗

θ is either:

1. Deterministic with an inspection date at time

τ̂∗θ ≤ τ bind ≡ 1

r + λ
log

1

q
,

where τ bind is the deterministic review time that makes the incentive constraint bind at time
zero. So the monitoring distribution is F ∗

θ (τ) = 1{τ≥τ̂∗θ }.

2. Random with a monitoring distribution

F ∗
θ (τ) =

0 if τ ∈ [0, τ̂∗θ )

1− p∗θe
−m∗(τ−τ̂∗θ ) if τ ∈ [τ̂∗θ ,∞]

where τ̂∗θ ≤ τ bind and

m∗ = (r + λ)
q

1− q

p∗θ =
1− e(r+λ)τ̂∗θ q

1− q
.

Theorem 1 states that the optimal policy belongs to the following simple family of monitoring
policies. For a given outcome in the last inspection, there is a time τ̂∗θ such that the optimal policy
calls for no monitoring until that time, a strictly positive probability (an atom) at that time, and
then monitoring with a constant hazard rate. One extreme policy in that family is to inspect for
sure at τ̂∗θ : the timing of the next inspection is deterministic, and the incentive constraints bind at
most right after an inspection (so that τ∗θ ≤ τbind). There is a special case in which τ̂∗θ = 0 so the
policy is fully random and requires monitoring at a constant hazard rate. In general, the optimal
random policy has an atom at τ̂∗θ such that the incentive constraints hold exactly at τ = 0 (and
then are slack till τ̂∗θ and bind forever after).

Such a simple policy can be implemented by a principal who monitors many firms by dividing
them into two sets: the recently-inspected firms and the rest. Firms in the second set are inspected
randomly, in an order that is independent of their time on the list. Firms in the first set are not
inspected at all. They remain in the first set for a deterministic amount of time that may depend
on the results of the last inspection. When the time in the first set ends, the principal inspects
a fraction of the firms (and resets their clock in the first set). The remaining fraction of firms is
moved to the second set. This policy is described by two parameters: times in the first set after
the good and bad results. Given those times, the fractions of firms inspected from each of the sets
are uniquely pinned down by incentive constraints.

Real-world inspection schemes share several qualitative aspects of the optimal policy. In many
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applications, monitoring systems feature random inspections. For example, restaurant hygiene
inspections in the U.S are random and have a reputational impact because the outcome of the
inspections is disclosed to the public (see Jin and Leslie (2003)). In the U.S., firms are inspected
for health and safety by the Occupational Safety and Health Administration. Safety inspections also
happen randomly every year. As Levine et al. (2012) demonstrate empirically, random inspections
seem to play an important incentive role.19 Also, random quality inspections are widely used in
Europe to evaluate schools.

However, not all monitoring systems feature purely random inspections. Many monitoring
applications exhibit regular periodic inspections; for example, the Public Company Accounting
Oversight Board (PCAOB) monitors audit firms annually or triennially, depending on their size.
The PCAOB inspections are noisy, as it evaluates a random sample of the auditor’s past audit
engagements. In the U.K., schools are supposed to be inspected by Office for Standards in Educa-
tion, Children Services and Skills (Ofsted) at least once over a four-year cycle, so monitoring also
exhibits a deterministic component.

We show that a policy with a constant hazard rate minimizes the cost of inspections subject to
the incentive compatibility constraints. However, random policies are inefficient because inspections
might not be performed when information is most valued. If u(x) is sufficiently convex, the benefit
of delaying inspections to increase the value of learning is greater than the associated increase in
cost, caused by the departure from the constant hazard rate policy. However, over time, the value
of learning grows slower and slower. For example, as beliefs get closer to the steady-state, they
change very slowly, and the trade-off is dominated by cost minimization. This explains why the
optimal policy eventually implements a constant hazard rate. Convexity of u(x) implies that there
is a unique time when the benefits of delaying inspections balance the increased cost of inspections.

In the case of our previous applications, our model predicts that when learning is particularly
valuable to the regulator (for example, when health and safety is a concern, as in the OSHA
application), then optimal monitoring systems feature frequent deterministic inspections. That is,
even if incentive issues are not particularly relevant (e.g., effort is costless), learning about hazards
to prevent accidents is relevant to the regulator. Similarly, in the case of school quality inspections,
learning is important as it allows the regulator to steer children to the best schools. The importance
of learning may explain perhaps why in the U.K. all schools incorporate a periodic, deterministic
component, to its random inspection scheme.

Some of our applications feature inspection frequencies that depend on the outcome of the last
inspection (i.e., past performance). For instance, in the U.K. since 2009, the frequency of school
inspections varies according to each school’s past performance, whereby inadequate schools are
inspected every two years, and outstanding schools are inspected every five years. Our model can
generate such asymmetric frequency if u is relatively convex at the bottom and linear at the top of
the distribution. In other words, if the information is particularly valuable when schools perform

19In a natural field experiment, they found that companies subject to random OSHA inspections showed a 9.4
percent decrease in injury rates compared with uninspected firms.
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badly, then the optimal monitoring system will feature a higher frequency when the outcome of the
inspection is bad.

4.1 Analysis Principal Problem

Having discussed the shape of the optimal policy and its implementations, we proceed to analyze
the principal problem and to provide a sketch of the derivation of the policy in Theorem 1. The
full verification arguments are provided in the appendix. The first step in the analysis is to express
the principal’s problem as a linear program. According to Proposition 1, incentive compatibility
constraint at time t depends only on the distribution of the time to the next inspection, τn+1 ≡
Tn+1−t and is independent of the distribution of monitoring times during future monitoring cycles,
{Tn+k}k≥2. Let

M(U, x) ≡ xUH + (1− x)UL − c

be the principal’s expected payoff at the inspection date given beliefs x and continuation payoffs
U ≡ (UL, UH). We can write the principal problem recursively using θTn as a state variable at
time Tn.20 Let Vθ(τ |U) be the principal payoff under the full effort by the firm, conditional on
monitoring at time τ . It depends on the last inspection result θ and the continuation payoffs. It is
given by

Vθ(τ |U) =

∫ τ

0
e−rsu(xθs)ds+ e−rτM(U, xθτ ), (2)

where xθτ ≡ θe−λτ + ā
(
1− e−λτ

)
is the expected quality at τ given starting quality θ. From here,

we can write the principal problem as choosing the distribution of the next inspection time, F ,
subject to the incentive compatibility constraints:

G θ(U) = maxF
∫∞
0 Vθ(τ |U)dF (τ)

subject to∫∞
τ e−(r+λ)(s−τ) dF (s)

1−F (τ−) ≥ q ∀τ ≥ 0,

(3)

The principal payoff under the optimal policy is then given by the fixed point G θ(U) = U, θ ∈
{L,H}.

From now on, we omit the dependence of Vθ(τ |U) on θ and U to simplify the notation and
we just write V (τ), understanding that it represents the principal payoff for a given state θ and
continuation payoff U. In order to simplify the principal problem in (3), we can replace the incentive
compatibility constraint in (3) by∫ ∞

τ
e−(r+λ)(s−τ)dF (s) ≥ q (1− F (τ−)) , ∀τ ≥ 0.

20Notice that because θt is a Markov process and the principal problem is Markovian, we can reset the time to zero
after every inspection and denote the value of θt at time Tn by θ0.
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Notice that we have added extra constraints for some values of τ for which F (τ) = 1; however, we
can include them without loss of generality as they are trivially satisfied by any feasible policy. We
can now write the principal problem in (3) as

maxF
∫∞
0 V (τ)dF (τ)

subject to∫∞
τ

(
e−(r+λ)(s−τ) − q

)
dF (s) ≥ 0, ∀τ ≥ 0∫∞

0 dF (τ) = 1.

(4)

The advantage of the formulation in (4) over the one in (3) is that the former is a linear programming
problem.

To develop some intuition of the shape of the optimal policy, consider the problem of the
principal when only the incentive compatibility constraint at time 0 is relevant. Ignoring the
second constraint in (4) we get the Lagrangian

L =

∫ ∞

0
V (τ)dF (τ) + µ

(∫ ∞

0
e−(r+λ)τdF (τ)− q

)
,

where µ ≥ 0 is the Lagrange multiplier of the time zero incentive compatibility constraint. For some
arbitrary time τ , consider a policy that satisfies both constraints, and a perturbation to this policy
that increases dF (τ + dτ) and reduces dF (τ) by the same amount, so that the total probability
stays constant (so the second constraint is satisfied). The marginal effect of this perturbation on
the Lagrangian is

V (τ + dτ)− V (τ) + µ
(
e−(r+λ)(τ+dτ) − e−(r+λ)τ

)
Dividing by dt, taking the limit, and multiplying by e(r+λ)τ we get

e(r+λ)τV ′ (τ)︸ ︷︷ ︸
≡h(τ)

−µ (r + λ) (5)

At the time τ̂ of an atom this derivative is zero since we do not want to postpone the atom anymore,
which we could do by reducing the atom at τ̂ and increasing the probability of monitoring dτ later.
We show in the formal proof in the appendix that the function h(τ) is quasi-convex and decreasing
to the left of τ̂ (which means that (5) is positive for all τ < τ̂ , so it is optimal to not have any
probability of monitoring before τ̂ . Just after time τ̂ , (5) is negative so we want to front-load
monitoring, which means that monitoring occurs at a constant hazard rate of monitoring that
makes the incentive compatibility constraint binding (unless the atom at τ̂ entails monitoring with
probability one).21

21A complication arises because h(τ) is quasi-convex rather than just decreasing. As a result, the reasoning so far
could imply a second time τ̃ at which h(τ) crosses µ (r + λ) from below (and remains above thereafter). This would
suggest the possibility that having a second atom is optimal. The full analysis of the problem, once we incorporate
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Building upon the previous analysis of the benefits of front-loading monitoring when the shadow
cost of the incentive compatibility constraint is high, we can proceed with the proof of Theorem
1. The proof relies on the theory of weak duality for infinite-dimensional linear programming
problems (Anderson and Nash, 1987, Theorem 2.1). In particular, the proof consists of constructing
multipliers for the dual problem such that the value of the dual is the same as the expected payoff
of the policy in Theorem 1. By weak duality, any feasible solution for the dual problem provides
an upper bound for the value of the primal problem. Thus, if we can find feasible multipliers such
that the value of the dual is equal to the expected payoff of the policy in Theorem 1, then this
policy maximizes the principal’s expected payoff.

The first step is to derive the dual optimization problem. The Lagrangian for the principal
problem is

L(F,Ψ, η) =

∫ ∞

0
V (τ)dF (τ)+

∫ ∞

0

∫ ∞

τ

(
e−(r+λ)(s−τ) − q

)
dF (s)dΨ(τ)+ η

(
1−

∫ ∞

0
dF (τ)

)
,

where Ψ(τ) is the cumulative Lagrange multiplier (an integral of the individual Lagrange multipliers
on the continuum of incentive compatibility constraints). The dual problem can be derived starting
from the Lagrangian above. By changing the order of integration, the Lagrangian can be written
as

L(F,Ψ, η) = η +

∫ ∞

0

(
V (τ)− η +

∫ τ

0

(
e−(r+λ)(τ−s) − q

)
dΨ(s)

)
dF (τ).

The optimization of the Lagrangian is finite only if the following inequality is satisfied for all τ ≥ 0:

V (τ)− η +

∫ τ

0

(
e−(r+λ)(τ−s) − q

)
dΨ(s) ≤ 0.

It follows that the dual of the maximization problem (4) is given by

minη,Ψ η

subject to

V (τ)− η +
∫ τ
0

(
e−(r+λ)(τ−s) − q

)
dΨ(s) ≤ 0, ∀τ ≥ 0

Ψ(0) ≥ 0

Ψ(τ) is nondecreasing

(6)

Remark 2. Our strategy for the proof has been to conjecture the shape of the optimal policy and
then verify its optimality by looking at the dual problem. This approach works in hindsight, once we
know the general shape of the solution. However, it is difficult to guess the solution directly from
the principal problem (4). An alternative approach consists of rewriting the principal problem (3)
as a dynamic optimization problem, which can then be analyzed using tools from optimal control.

all the remaining incentive compatibility constraints, verifies that adding an extra atom is suboptimal.
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This was the original approach we followed for the analysis. For the interested Reader, we present
such formulation in Appendix D.

The first step in the analysis of the dual problem, is to consider the best monitoring policy within
the class of random policies described in Theorem 1. This comes down to solving the following
maximization problem

max
τ̂∈[0,τbind]

(
e(r+λ)τ̂ − 1

1− q

)
qV (τ̂) +

(
1− e(r+λ)τ̂q

1− q

)∫ ∞

τ̂
m∗e−m∗(τ−τ̂)V (τ)dτ. (7)

The first order condition of the optimization problem (7) can be written in terms of the function
h(τ) = e(r+λ)τ as follows:

h(τ̂∗) =

∫ ∞

τ̂∗
ρe−ρ(s−τ̂∗)h(s)ds, (8)

where ρ ≡ (r + λ + m∗).22 The objective function in problem (7) is quasi-concave, so it can be
shown that τ̂∗ < τbind only if

h(τbind) <

∫ ∞

τbind
ρe−ρ(s−τbind)h(s)ds, (10)

and that τ̂∗ > 0 only if 23

h(0) >

∫ ∞

0
ρe−ρsh(s)ds. (11)

Notice that the optimality conditions can be fully specified in terms of the h function identified
in our perturbation analysis in equation (5). Equations (9) through (11) are instrumental in the
construction in the multipliers for the dual problem, which provide a verification argument for the
optimality of our conjectured policy. If both inequalities, (10) and (11), hold, then there is a unique
τ̂∗ < τbind that satisfies the first order condition in equation (8). It follows from here that, for
an arbitrary continuation value of U = (UL, UH), the optimal policy can be fully characterized in
terms of the function h(τ). The next proposition provides this characterization.

Proposition 2. Let τ∗θ ≡ argmaxτ∈[0,τbind] Vθ(τ |U), and hθ(τ) ≡ e(r+λ)τV ′
θ(τ |U). The optimal

policy is the following:

1. If τ∗θ < τ bind, then the optimal policy is deterministic monitoring at time τ∗.

2. If τ∗θ = τ bind and

hθ(τ
bind) ≥

∫ ∞

τbind
ρe−ρ(s−τ)hθ(s)ds,

22After some straightforward manipulations of the first order condition, we can write it as

V ′(τ̂∗)

r + λ+m∗ = E[V (τ)|τ > τ̂∗]− V (τ̂∗). (9)

We arrive to equation (8) using integration by parts.
23The inequalities in (10) and (11) follow from a single crossing argument provided in the appendix in Lemma 4.
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then the optimal policy is deterministic monitoring at time τ bind.

3. If τ∗θ = τ bind and

hθ(τ
bind) <

∫ ∞

τbind
ρe−ρ(s−τ)hθ(s)ds,

then the optimal policy is random with a distribution given by Theorem 1, where τ̂∗θ is given
by

τ̂∗θ = inf

{
τ ∈ [0, τ bind] : hθ(τ) ≤

∫ ∞

τ
ρe−ρ(s−τ)hθ(s)ds

}
.

Proposition 2 establishes Theorem 1. However, this characterization of the optimal policy is for
an arbitrary value of the principal’s continuation value U. To fully solve the principal problem then
we also have to solve for the continuation value consistent with the optimal continuation policy.
We turn to that problem next.

4.2 Solving the Bellman Equation and Finding the Optimal Policy

In this section we provide a simple characterization of a Bellman equation that allows us to find the
optimal policy and corresponding continuation payoffs. Theorem 1 allows to write the principal’s
problem as a one-dimensional problem in which we choose the date of the atom in the monitoring
distribution. If we ignore the incentive compatibility constraint, the optimal policy is deterministic
and is given by the maximizer of V (τ). However, such a policy might entail infrequent monitoring
and violate the incentive compatibility constraint. In such a case, we need to consider policies that
might entail some randomization. By Theorem 1, the optimal random policy is fully described by
the monitoring rate m∗ and the length of the quiet period, captured by τ̂∗θ , which pins down the
size of the atom that initializes the random monitoring phase. Given the simple form of an optimal
policy, we can reduce the optimization problem for the fixed point to the analysis of a simple one-
dimensional maximization problem. Let Gθ

det be the best incentive compatible deterministic policy
given continuation payoffs U:

Gθ
det(U) ≡ max

τ̂∈[0,τbind]

∫ τ̂

0
e−rτu(xθτ )dτ + e−rτ̂M(U, xθτ̂ ),

and let Gθ
rand be the payoff of best random policy, as given by:

Gθ
rand(U) ≡ max

τ̂∈[0,τbind]

∫ τ̂

0
e−rτu(xθτ )dτ + e−rτ̂

[(
e(r+λ)τ̂ − 1

1− q

)
qM(U, xθτ̂ )+(

1− e(r+λ)τ̂q

1− q

)∫ ∞

τ̂
e−(r+m)(τ−τ̂)

(
u(xθτ ) +mM(U, xθτ )

)
dτ

]

21



The solution to the principal’s problem is thus given by the fixed point:

UL = max{GL
det(UL, UH),GL

rand(UL, UH)} (12a)

UH = max{GH
det(UL, UH),GH

rand(UL, UH)} (12b)

The operator in (12) is a contraction so a unique fixed point exists (see proof of Lemma 5 in the
appendix).

To build additional economic intuition, it is useful to analyze two polar cases. In the next
subsection, we analyze a relaxed problem in which we ignore the incentive compatibility constraint.
In this case, the principal monitors to maximize the benefit of learning net of the monitoring
cost. We show that the optimal monitoring policy is deterministic with periodic reviews. Next,
we look at the optimal policy when learning is not valuable (i.e., u(x) is linear). In this case,
the principal looks for the incentive compatible policy that minimizes the cost of inspections. We
show that the cost-minimizing policy entails random monitoring with a constant hazard rate. In
the general case, the trade-off echoes these two benchmarks. As in the linear case, to minimize
costs subject to satisfying incentive constraints, it is optimal to front-load incentives and hence to
monitor with a constant hazard rate. However, when u(x) is convex, as reputation moves from one
of the extremes towards the steady-state, inspections generate additional value from learning. The
value of learning is zero at the extreme reputations and grows originally fast because beliefs move
fast after inspections.

4.3 Optimal Policy without Moral Hazard

Without moral hazard, it is optimal to concentrate all the monitoring probability on the time
V (τ) reaches its maximum. The optimal policy is deterministic with an inspection date τ∗ =

argmaxτ≥0 V (τ). If the solution is interior, then τ∗ satisfies the first order condition V ′(τ∗) = 0.24

The following proposition characterizes the optimal policy in this case.

Proposition 3. In absence of moral hazard, the optimal policy is deterministic with an inspection
date

τ∗θ = argmax
τ≥0

∫ τ

0
e−rsu(xθs)ds+ e−rτM(U, xθτ ),

where U = (UL, UH) is the unique solution to the fixed point problem

UL = max
τ≥0

∫ τ

0
e−rsu(xLs )ds+ e−rτM(U, xLτ )

UH = max
τ≥0

∫ τ

0
e−rsu(xHs )ds+ e−rτM(U, xHτ ).

24It follows from the quasi-convexity of h(τ) that the first order condition together with the second order condition
are sufficient.
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To develop some intuition, we consider the first order condition V ′(τ∗) = 0, which amounts to

u(xθτ∗) + ẋτ∗(UH − UL) = rM(U, xθτ∗). (13)

The left hand side is the flow payoff that the principal gets in absence of monitoring while the right
hand side is the (normalized) payoff of monitoring immediately. At the optimal inspection date τ∗,
the principal is indifferent between inspecting now or later. Additional intuition can be obtained
by thinking about the continuation value at time t as a function of the belief at time xt, which we
denote by U(xt). If the principal does not monitor at time t, the continuation value satisfies the
standard HJB equation

rU(xt) = u(xt) + λ(ā− xt)U
′(xt). (14)

If the principal inspects at time τ∗, the value function satisfies the value matching condition
U(xτ∗) = M(U, xθτ∗). Moreover, at the optimal inspection time, the value function satisfies the
smooth pasting condition U ′(xτ∗) = UH − UL. Substituting both conditions in the HJB equation
(14) we get the first order condition (13). Figure 1, illustrates the optimal policy. The time of
inspection τ∗θ is such xθτ∗θ

equals the threshold belief x∗(θ). The thresholds x∗(θ) depends on the
convexity of the principal’s objective function and the cost of monitoring c since these parameters
capture the value and cost of information, respectively. In the extreme case when u(·) is linear (or
c is too large) the optimal policy is to never monitor the firm but let beliefs converge to ā. In the
online appendix, we provide a full analysis of the Principal problem using dynamic programming.

x∗(L) x∗(H)

U(xt)

M
(U
, x

t)

xLt xHt

xt

U(xt)

Figure 1: Value Function. The optimal policy requires to monitor whenever xLt = x∗(L) and
xHt = x∗(H).
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4.4 Linear Payoffs: Information without Direct Social Value

Next, we analyze the case in which the principal’s flow payoff u(·) is linear. As discussed above,
this case captures applications where the principal is an industry self-regulatory organization that
is not directly concerned about consumer surplus but wishes to maximize the industry’s expected
profits.

Under linear payoffs, information has no direct value to the principal. Hence, the principal’s
problem boils down to minimizing the expected monitoring costs, subject to the incentive compat-
ibility constraints. Accordingly, using Proposition 1, we can reduce the principal’s problem to the
following cost minimization problem:

C0 = inf(Tn)n≥1
E
[∑

n≥1 e
−rTnc

∣∣∣FP
0

]
subject to:
k
λ ≤ 1

r+λE
[
e−(r+λ)(Tn+1−t)|Ft

]
∀t ∈ [Tn, Tn+1).

(15)

The principal aims to minimize expected monitoring costs subject to the agent always having
an incentive to exert effort. The optimal monitoring policy in this case is simple, consisting of
random inspections with a constant hazard rate:

Proposition 4. If u(xt) = xt, then the optimal monitoring policy is a Poisson process with arrival
rate

m∗ = (r + λ)
q

1− q
,

where
q ≡ (r + λ)

k

λ

The intuition for Proposition 4 follows from the fact that in (15) future monitoring is discounted
by r in the objective function and by r + λ in the constraints (as previously discussed, inspections
have a discounted effect on incentives because quality depreciates over time.) As a result, the opti-
mal monitoring policy front-loads inspections in a way that the incentive compatibility constraints
bind in all periods. This implies that the optimal intensity of monitoring is constant at a rate
m∗ = (r + λ)q/(1− q), and that there are no deterministic reviews nor atom, or else the incentive
constraint would be slack some time prior to the review, in which case the principal could save
some monitoring expenses without violating the firm’s incentive to exert full effort.

As mentioned above, random monitoring is prevalent in the real world: restaurant hygiene
is inspected randomly in the U.S.; school quality is inspected randomly in the U.K.; firms are
inspected randomly for safety and health hazards in the U.S. However, most monitoring systems
feature hazard rates that evolve over time, suggesting that the linear model is not a good description
of these real-world applications. In Section 6, we discuss other potential explanations of why hazard
rates are not constant in the real world.

In the online appendix, we provide an alternative proof based on a perturbation argument.
However, we can immediately verify that the policy in Proposition 4 is optimal applying Proposition
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2 to the particular case in which u(x) is linear. If u(x) = x and the principal uses a policy which
is random with constant arrival rate m∗, then a simple calculation yields

r(UL − c) =
λ

r + λ
ā− (r +m∗)c

UH − UL =
1

r + λ

Thus, we get that
h(τ) = eλτ (r +m∗)c,

which means that

h(0) = (r +m∗)c <

∫ ∞

0
ρe−ρsh(s)ds = (r +m∗)c

(
1 +

λ

r +m∗

)
.

Thus, by Proposition 4, the policy with constant hazard rate m∗ is optimal.

Remark 3. It follows from the alternative proof of Proposition 4 found in the appendix that the
result extends to the case in which the principal and the firm have different discount rates as long
as the principal is patient enough. If the principal has a discount rate rP , then Proposition 4 still
holds as long as rP < r+λ. If the principal is sufficiently impatient, that is if rP > r+λ, then the
optimal policy in the linear case involves purely deterministic monitoring.

4.5 Comparative Statics

Having characterized the structure of the optimal policy, we can discuss the conditions under
which random monitoring dominates deterministic monitoring. The next proposition considers
how parameters affect the form of the optimal policy.

Proposition 5 (Comparative Statics). Suppose that u(x) is strictly convex, then:

1. There is c† > 0 such that, if c < c† then the optimal policy is deterministic monitoring, and
if c > c† then the optimal policy is random.

2. There is k† < λ/(r + λ) such that for any k > k† the optimal policy is random.

3. There is ā† < 1 such that, for any ā ∈ (ā†, 1), the optimal policy given θTn−1 = H has random
monitoring. Similarly, there is ā† > 0 such that, for any ā ∈ (0, ā†), the optimal policy given
θTn−1 = L is random.

4. Consider the limit when λ → ∞, c → 0, and λc ∈ (0,∞). In this limit, the optimal policy is
random with constant monitoring rate m∗.

Figure 2a shows the monitoring distribution for low and high monitoring cost: When the cost of
monitoring is low, the policy implements deterministic monitoring; in fact, if the cost of monitoring
is sufficiently low then the benchmark policy (the relaxed problem without incentive constraint)
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prescribes frequent monitoring, and accordingly the incentive compatibility constraint is slack.
When the cost is at an intermediate level, the optimal policy is a mixture of deterministic and
random monitoring with a constant hazard rate. In contrast, when the cost of monitoring is high,
the optimal policy specifies constant random monitoring starting at time zero. Similarly, Figure
2b shows the comparative statics for the cost of effort, k. The monitoring policy is random if k is
high enough, deterministic if k is low, and a mixture of both when k is intermediate. We provide a
more detailed analysis of the comparative statics in Section 5 in the context of a model with linear
quadratic preferences and quality driven by Brownian motion.

Cost is a key dimension that determines the optimal design of a monitoring system. Coming
back to our school monitoring example, a well-documented report estimates that a school quality
review system in the United States analogous to the British system –which targets the entire
universe of schools within a three years cycle— would cost between $635 million and $1.1 billion
annually, depending on the methodology.25 Another report estimates that a system that reviews
every school every three years would cost approximately $2.5 billion a year (see “On Her Majesty’s
School Inspection Service” by Craig D. Jerald). Currently, school quality systems around the world
target the entire universe of schools. In this case, our results are suggestive that, given relatively
high monitoring costs, a random inspection scheme could be an efficient way to lower costs while
still ensuring incentives are in place.26

5 Quality Driven by Brownian Motion

Our baseline model assumes that quality can take on two values. Such binary specification makes
the analysis tractable but is not strictly needed: the economics of the problem is not driven by the
details of the quality process. The policy in the linear case remains optimal for a general class of
quality processes. In this section, we analyze the optimal policy when information is valuable, and
quality follows the Ornstein-Uhlenbeck process

dθt = λ(at − θt)dt+ σdBt, (16)

where Bt is a Brownian motion.
The incentive compatibility in Proposition 1 holds for any process for quality satisfying the

stochastic differential equation
dθt = λ(at − θt)dt+ dZt,

where Zt is a martingale. In particular, it holds when Zt is a Brownian motion Bt, so quality
follows the Ornstein-Uhlenbeck process in equation (16).

25For example, Rhode Island, after 12 years decided to eliminate its school quality inspection system due to budget
cuts.

26Of course, the previous recommendation should be taken with a grain of salt as we cannot look at the nominal
cost of monitoring in isolation, but we need to look at the cost of monitoring relative to the value of information
captured by u(x).
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(a) Comparative statics for c. The cost of effort is
k = 0.2.
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(b) Comparative statics for k. The cost of monitoring
is c = 0.05.

Figure 2: Comparative statics for the optimal monitoring distribution. The figure shows the CDF
of the monitoring time Tn when u(xτ ) = xτ − 0.5 × xτ (1 − xτ ) and r = 0.1, λ = 1, ā = 0.5.
When c or k are low, the incentive compatibility constraint is slack under the optimal monitoring
policy in the relaxed problem that ignores incentive compatibility constraints. As the monitoring
or effort cost increase, deterministic monitoring is replaced by random monitoring: When the
cost of monitoring is very high the monitoring policy consist on random monitoring at all times
and at a constant rate; on the other hand, if the cost of monitoring is an intermediate range,
the optimal monitoring policy entails a first period without monitoring followed by an atom and
constant random monitoring thereafter. In this example the payoff function and the technology are
symmetric, so the optimal monitoring policy is independent of θ0.

Whenever the principal’s payoff is not linear in quality, one needs to specify the principal’s
preferences as a function of the firm reputation. With non-linear preferences, the optimal policy
generally depends on the last inspection’s outcome (which in this case has a continuum of outcomes).
While this fact does not seem to change the core economic forces, it makes the analysis and
computations more involved, so we do not have a general characterization of the optimal policy
for the convex case. However, we can get a clean characterization of the optimal policy when the
principal’s preferences are linear-quadratic. The linear-quadratic case is common in applications
of costly information acquisition for its tractability (Jovanovic and Rousseau, 2001; Sims, 2003;
Hellwig and Veldkamp, 2009; Alvarez et al., 2011; Amador and Weill, 2012).

Suppose that the principal has linear-quadratic preferences u(θt, xt) = θt − γ(θt − xt)
2. Taking

conditional expectations we can write the principal’s expected flow payoffs as u(xt,Σt) = xt − γΣt,
where Σt ≡ Var(θt|FM

t ). For example, this preference specification corresponds to the case in which
the evolution of quality is driven by Brownian motion in Example 3 in Section 2.1.
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For the Ornstein-Uhlenbeck process in (16), the distribution of θt is Gaussian with moments

xt = θ0e
−λt + ā

(
1− e−λt

)
(17)

Σt =
σ2

2λ

(
1− e−2λt

)
. (18)

Using the law of iterated expectations, we see that the principal’s continuation payoff at the time
of an inspection is linear in quality, and given by

U(θ) =
θ − ā

r + λ
+

ā

r
− C,

where the optimal cost of inspection C is given by the solution to the fixed point problem

C = min

{∫ ∞

0
C(τ)dF (τ) :

∫ ∞

τ

(
e−(r+λ)(s−τ) − q

)
dF (s) ≥ 0, ∀τ ≥ 0

}
,

C(τ) ≡
∫ τ

0
γΣsds+ e−rτ (c+ C).

The optimal policy is now formulated recursively as a cost minimization problem where the cost
borne by the principal has two sources, monitoring and uncertainty, as captured by the residual
variance of quality Στ . As before, the principal chooses the distribution over the monitoring date
F (τ). Given the symmetry in the linear-quadratic case, the optimal policy is independent of the
outcome in the previous inspection, and using the previous results from the binary case, we can
show that the optimal monitoring policy takes the same form as in the binary case. This means
that the optimal monitoring policy and the cost of monitoring is given by27

C = min

{
min

τ̄∈[0,τbind]

∫ τ̄
0 e−rτγΣτdτ + e−rτ̄ c

1− e−rτ̄
,

min
τ̂∈[0,τbind]

∫ τ̂
0 e−rτγΣτdτ + e−rτ̂

(
1−e(r+λ)τ̂ q

1−q

)∫∞
τ̂ e−(r+m∗)(τ−τ̂)γΣτdτ + δ(τ̂)c

1− δ(τ̂)

 , (19)

where

δ(τ̂) ≡
(
eλτ̂ − e−rτ̂

1− q

)
q +

(
e−rτ̂ − eλτ̂q

1− q

)
m∗

r +m∗ ,

and the optimal monitoring policy is given by:

Proposition 6. Suppose that θt follows the Ornstein-Uhlenbeck process in (16), and that the
27In the whole paper, we focus on policies that induce full effort from the agent. In this quadratic specification, it

is possible to verify that if the cost of monitoring is not to high, the optimal policy we described is better than any
other stationary policy, that is deterministic or monitors at a rate m∗, even when we consider policies that do not
induce effort at all times. For example, such is the case if γ = 1, r = 0.1, k = 0.5, c = 0.25, ā = 0.5, λ = 1 and σ2 = 1.
In this numerical example, the optimal policy is random with an atom, and it is given by τ̂ = 0.16 < τbind = 0.54.
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principal’s expected payoff flow is u(xt,Σt) = xt−γΣt. Then the optimal monitoring policy is given
by the distribution

F ∗(τ) =

0 if τ ∈ [0, τ̂∗)

1− p∗e−m∗(τ−τ̂∗) if τ ∈ [τ̂∗,∞]

where
m∗ = (r + λ)

q

1− q
,

and τ̂∗ ≤ τ bind. If p∗ > 0, then it is given by

p∗ =
1− e(r+λ)τ̂∗q

1− q
.

As before, the distribution of monitoring is characterized by two numbers, the size of the atom
p∗ and the monitoring rate m∗. As special cases, the policy prescribes deterministic monitoring
when p∗θ = 0, and purely random monitoring with constant rate m∗ when p∗θ = 1.

The comparative statics in the case of Brownian shocks are similar to those in Proposition
5: The optimal policy is deterministic if the cost of monitoring is low and random if the cost of
monitoring is high. There are two new parameters in the model, γ and σ: However, after inspecting
equations (18) and (19) we see that the monitoring policy only depends on the cost of monitoring
per unit or risk, c/γσ2, so increasing γ/σ2 is equivalent to reducing the cost of monitoring. We
have the following proposition characterizing the comparative statics in the linear-quadratic case.

Proposition 7 (Comparative Statics). Suppose that θt follows the Ornstein-Uhlenbeck process in
(16), and that the principal’s expected payoff flow is u(xt,Σt) = xt − γΣt. If we let c̃ ≡ c/γσ2 then

1. There is c̃† > 0 such that the optimal policy is deterministic if c̃ ≤ c̃† and random if c̃ > c̃†.

2. τ̂∗ is increasing in c̃ for c̃ ≤ c̃† and decreasing for c̃ > c̃†. This means that the atom p∗ is
increasing in c̃ so the probability of monitoring at τ̂∗ is decreasing in c̃ .

3. If c̃ ≤ 1
2λ(r+2λ) then there is k† > 0 such that the optimal policy is deterministic if k ≤ k† and

random if k > k†. For k > k†, τ̂∗ is decreasing in k.

4. Consider the i.i.d limit when λn → ∞, σn = σ
√
λn, c̃n = c/γσ2

n. In this limit, the optimal
policy is random with constant monitoring rate m∗.

Consistent with the notion that the principal faces two types of costs –the cost of inspections,
captured by c, and the cost of uncertainty, captured by γσ2– the structure of the optimal policy
(i.e., deterministic vs. random) depends on the cost of inspection per unit of uncertainty, or c/γσ2.

Intuitively, a low c̃ captures the case when the principal has little tolerance to uncertainty, char-
acterized by frequent inspections and the absence of moral hazard issues (the incentive constraint
is slack). By contrast, the high c̃ captures the case when inspections are too costly relative to
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the cost of uncertainty, leading to rather infrequent inspections and random monitoring. Finally,
the result that the optimal policy is random in the i.i.d. limit, where quality shocks are highly
transitory, shows how the possibility of window dressing moves the optimal policy towards random
monitoring.

6 Final Remarks

The dissemination of information about quality incentivizes firms to invest in quality. Monitoring
systems are key sources of information in a wide spectrum of applications, ranging from school
reviews and product safety to bank solvency and audit quality. Since monitoring systems are
usually costly to implement, it is important for governments and regulatory agencies to design them
efficiently. However, little is known about optimal monitoring schemes, particularly in situations
in which monetary transfers —such as fines— are too small to be relevant, and public information
is scarce.

Since Becker (1968), the literature has largely focused on monitoring as a punishment device to
deter misbehavior. In this paper, we develop a reputational theory of monitoring that emphasizes
its informational role. Our theory is built on the premise that the reputational impact of inspections
is often significantly more relevant than the limited pecuniary punishments that our legal system
permits. It also emphasizes the notion that monitoring is, in essence, a form of costly information
acquisition. As such, our theory is most relevant in settings where the external flow of information
is insufficient.

Specifically, we study the optimal monitoring policy in a principal-agent setting, in which the
agent is driven by reputation concerns, and fines are infeasible. The agent exerts hidden effort to
affect product quality, and his payoff depends on the product’s perceived quality. The principal’s
monitoring policy plays a dual role that is present in most monitoring systems: i) a learning role,
as monitoring provides valuable information to the principal even in the absence of incentive issues
and ii) an incentive role, as monitoring outcomes publicly reveal the agent’s quality and affect his
demand. These two aspects are not only natural but critical in shaping the structure of the optimal
monitoring policy. While learning favors the use of deterministic inspections, incentive provision
favors the use of random inspections.

One might expect that the combination of both ingredients in a dynamic game would lead to
complex, time-varying, monitoring policies; however, the optimal policy is surprisingly simple and
easy to implement in practice. Depending on the outcome of the last inspection, the optimal policy
is a mixture of a deterministic periodic review and random inspections with a constant hazard rate
and fixed delay. The optimal policy is consistent with some features observed in the real world.
For example, many monitoring systems —such as school reviews in the European Union or safety
inspections in the U.S.— incorporate a combination of periodic, deterministic components, and
random inspection schemes.

Our model is stylized and ignores several aspects that may be important in practice. We

30



conclude with a discussion on the impact that these aspects on the optimal monitoring policy, and
how our model can be extended to incorporate them.

First, to isolate the effect of reputation concerns, we have considered settings without fines, or
any sort of monetary transfer, where the agent’s incentives are driven purely by reputation/career
concerns. We believe that this assumption is natural in many applications in which fines play a
secondary role or are outright forbidden. For example, in the case of public schools, there is limited
scope to fine schools that exhibit poor performance or to provide high power incentives to school
principals. More generally, as thoroughly discussed in Dewatripont et al. (1999), there is a limited
role for financial incentives in bureaucracies and many governance agencies, where most incentives
are provided by career concerns. In the case of auditing firms, we see that auditors rarely pay
fines to the PCAOB, and, if any, these fines are often perceived as immaterial by the leading audit
companies.

That being said, in many other situations, fines do play an important role, which may affect
the design of monitoring systems. At the extreme, with arbitrary fines, monitoring design becomes
trivial since a very small intensity of monitoring combined with a large fine would implement
first-best (Lazear (2006)). Our analysis suggests that under limited fines the optimal policy shifts
away from random monitoring towards deterministic reviews, because the solution to the relaxed
problem (that ignores incentive constraints) would be more likely to satisfy incentive constraints
when low-quality firms pay fines.28 Relatedly, we have considered cases in which monitoring is
costly to the monitor but (relatively) costless to the agent. This assumption is broadly consistent
with some of our applications, such as restaurant hygiene inspections, health and safety reviews, or
auditor inspections. However, in many other situations, regular inspections place a burden on the
inspected firms. When inspections are costly to the agent, frequent inspections serve a similar role
as money burning technologies considered in the literature on optimal delegation (see Amador and
Bagwell (2013)), and the optimal design is likely to change. In this case, the regulator may use the
frequency of inspection as an incentive tool, by rewarding good performance with a lower frequency
of inspections and punishing bad schools with a higher frequency of inspections. This might be
one of the reasons why in the U.K., good performing schools are inspected every 5 years, while bad
performing schools are inspected every 2 years (see Jerald (2012)), or why in some countries (for
example, the Netherlands), complying firms are provided inspection holidays (OECD, 2014). In
our model, more frequent inspections after bad outcomes arise if the value of information is higher
for low performing schools (formally, if the payoff is more convex for low reputation).

Our baseline model ignores external news such as customer reviews and complaints, newspaper
articles, and accidents. For example, restaurant hygiene inspections are often triggered by a cus-
tomer complaint (see, e.g., Jones et al. (2004)). OSHA safety inspections respond to the arrival
of news about a firm’s safety hazards (Levine et al. (2012)). The optimal monitoring system is

28It is not immediately obvious to us what is a satisfactory model of limited fines. For example, if we only bound the
fee charged per inspection, then upon finding the firm to be low quality, the regulator could perform many additional
inspections in a short time interval and fine the firm multiple times. A similar issue arises if the firm incurs part of
the physical cost of inspection: running additional inspections could expose the firm effectively to a large fine.
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sensitive to the presence of such news. The impact of news crucially depends on the specific details
of the news process. For example, in the online appendix, we show that the qualitative aspects of
the model remain unchanged if the news process reveals the firm’s current type at a Poisson arrival
rate that is independent of the type. In other instances, the principal might be more likely to learn
if the quality of the product is either bad or low (that is, the arrival rate of news depends on the
quality of the product or service). In the online appendix we study the case in which the arrival
rate depends on quality when the principal’s preferences are linear. We show that the arrival of
bad news often leads to more frequent inspections and stronger enforcement, which is consistent
with how health and safety inspections are performed. We also find that in the bad news case, the
rate of monitoring decreases in reputation. The economic mechanism behind these results follows
the insight in Board and Meyer-ter-Vehn (2013) that, in the bad news case, the agent’s incentives
increase in reputation.

We have not considered the possibility that the firm can communicate with the principal. This
assumption is natural when the agent does not observe his type, as it might be the case in our
application to school quality (the incentive compatibility constraint does not change if we assume
that the firm does not observe its type, so the optimal policy remains the same). However, in some
applications, firms observe their types and are supposed to self-report any problems.29 In New York,
restaurants that fail a hygiene inspection can secure a quick re-inspection. Such self-reporting could
improve the performance of the optimal monitoring policy by avoiding unnecessary inspections. For
example, if we allow firms that failed the last inspection to self-report improvements, then the firm’s
reputation remains at zero until the firm requested re-certification. This improves the principal’s
payoff due to the role of learning, and the possible lower certification costs (the second effect is
ambiguous because allowing re-certification might reduce incentives). While we do not provide a
characterization of the optimal policy with self-reporting, we expect that the trade-offs between
random and deterministic inspections that we stress in this paper will remain relevant in such a
model, while new insights are likely to emerge (for example, a characterization of the timing at
which firms are allowed to re-certify upon request).

Another issue is whether the productivity of effort is the same in the good and the bad state.
In our model, we assume that the productivity of effort is the same across states. This assumption
simplifies the incentive constraints because the marginal return to effort is the same across states;
if the productivity of effort differs across states, then our analysis holds as long as we want to
maintain full effort in both states. In this case, the relevant incentive compatibility constraint is
the one for the state with the lowest productivity of effort.30

29For example, the National Association for the Education of Young Children requires accredited child
care centers to notify NAEYC within 72 hours of any critical incident that may impact program quality
http://www.naeyc.org/academy/update accessed 2/28/2017.

30If the agent does not observe the current state, then the analysis is potentially more complicated because the
agent’s beliefs will diverge from the principal’s if the agent deviates from the recommended effort. A policy that
assures that the agent has incentives to put full effort in both states at all times would still be incentive compatible
but not necessarily optimal. Our intuition about the optimal policy, in that case, is that, because after a deviation to
lower effort the agent assigns a lower probability to the high state than the principal, so the incentive compatibility
constraint in the high state becomes slack if productivity is higher in the low state, we can still characterize the optimal
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Finally, two assumptions have a crucial role in our analysis. First, we have only considered
policies that induce full effort after all histories; however, for some parameters, the optimal policy
will likely prescribe no effort at all, after some bad histories, as a punishment. Even if the full effort
is optimal in the first-best, this prescription can be optimal if conditional on the full effort, the
probability of maintaining high quality is very high. The intuition for this conjecture comes from
the case with ā = 1, in which the firm can maintain quality forever as long as it works. Because
an inspection revealing low quality only arises off-the-equilibrium path, we can relax the incentive
compatibility constraints (at no cost) using the worst possible punishment for the firm after that
outcome, which amounts to stop monitoring the firm altogether. This punishment leads to no
effort off path, and it is akin to revoking a firm’s license, which leads to the lowest possible payoff
for the firm. By continuity, we expect that using such strong punishments with some probability
remains optimal if ā is very close to 1 (see Marinovic, Skrzypacz, and Varas (2018) for analysis
along these lines in the context of voluntary certification). However, if the cost of inspections
is not too high and ā is sufficiently smaller than one, then we expect that the optimal policy
would indeed induce full effort. Another reason to focus on full effort is that in many applications
there are institutional constraints that prevent the principal from implementing zero effort as a
punishment. For example, in the case of public schools, neighbors would probably not allow a
policy that implements perpetual low quality if their local school has failed in the past. In this
case, a policy that looks for high effort after any history might be the only thing that is politically
feasible to implement. The optimal policy might also fail to implement the same effort at all times
if the cost of effort is strictly convex, and the optimal policy implements interior effort. In this
case, any policy that entails a deterministic review necessarily implements a time-varying effort.
When the cost of effort is convex, our analysis holds if the marginal cost of effort evaluated at ā is
low enough so the optimal policy implements the maximum level of effort.31

Second, the simplicity of the incentive compatibility constraint rests on the assumption that
the payoff of the firm is linear in reputation, which means that the firm only cares about its
average reputation. However, in some markets, the firm’s payoffs are likely non-linear in the firm’s
reputation, as is likely the case for restaurants, where consumers only go to restaurants that have
a sufficiently high hygiene reputation, making the restaurant’s payoffs convex in reputation. In
these cases, monitoring could have an additional effect of providing direct value to the firm. If the
firm’s payoff is convex, then the firm can be rewarded with frequent inspections, as this increases the
volatility of reputation. This leads to the seemingly counterfactual implication that firms with high
performance are inspected more often. We believe that this possibility is likely to push the optimal
monitoring policy towards deterministic reviews. Analyzing the optimal policy in this case is more
difficult than in our model because information has direct value to the firm, so inspections provide

policy using our current methods. However, if the productivity in the low state is lower, then the analysis gets more
complicated because we may need to keep the incentive compatibility constraint to prevent “double deviations”.

31Also, if the payoff function is linear, so there is no value of information acquisition, a constant hazard rate with
constant effort might still be optimal as this allows to smooth the cost of effort over time. Of course, the same caveat
about the role of low effort punishment still applies in this case.
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additional incentives, and the frequency of inspections can be used by the regulator to reward or
punish the firm. The full analysis of these kinds of punishments, as well as the analysis of time-
varying effort, requires the use of a different set of techniques, similar to the ones in Fernandes and
Phelan (2000), and we believe this is an important direction for future research.
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Appendix

A Incentive Compatibility: Proof Proposition 1
Proof. The first step is to define the martingale Zt in equation (A.1). Let NLH

t =
∑

s≤t 1{θs−=L,θs=H} and
NHL

t =
∑

s≤t 1{θs−=H,θs=L} be counting processes indicating the number of switches from L to H and from
H to L, respectively. The processes

ZLH
t = NLH

t −
∫ t

0

(1− θs)λasds

ZHL
t = NHL

t −
∫ t

0

θsλ(1− as)ds,

are martingales. Letting Zt ≡ ZLH
t −ZHL

t and noting that dθt = dNLH
t −dNHL

t we get that θt satisfies the
stochastic differential equation

dθt = λ(at − θt)dt+ dZt, (A.1)

which leads to equation (A.1). Full effort is incentive compatible if and only if for any deviation ât (with an
associated process for quality θ̂t)

Eā

[∫ Tn+1

t

e−r(s−t)(xs − kā)ds+ e−r(Tn+1−t)
(
θTn+1

Π(H) + (1− θTn+1
)Π(L)

)∣∣Ft

]
≥

Eâ

[∫ Tn+1

t

e−r(s−t)(xs − kâs)ds+ e−r(Tn+1−t)
(
θ̂Tn+1

Π(H) + (1− θ̂Tn+1
)Π(L)

)∣∣Ft

]

Letting ∆ ≡ Π(H)−Π(L) and replacing the solution for θt in (A.1), we can write the incentive compatibility
condition as

Eâ

[∫ Tn+1

t

e−r(s−t)
(
λe−(r+λ)(Tn+1−s)∆− k

)
(ā− âs)ds

∣∣Ft

]
≥ 0.

For any deviation we have that

Eâ

[∫ Tn+1

t

e−r(s−t)
(
λe−(r+λ)(Tn+1−s)∆− k

)
(ā− âs)ds

∣∣Ft

]
=

Eâ

[∫ ∞

t

1{Tn+1>s}e
−r(s−t)

(
λEs[e

−(r+λ)(Tn+1−s)]∆− k
)
(ā− âs)ds

∣∣Ft

]
.

So, we can write the incentive compatibility condition as

Eâ

[∫ Tn+1

t

e−r(s−t)
(
λEs[e

−(r+λ)(Tn+1−s)
∣∣Ft]∆− k

)
(ā− âs)ds

]
≥ 0.

The result in the lemma then follows directly after replacing ∆ = Π(H)−Π(L) = 1/(r + λ).
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B Analysis Principal Problem: Proof of Theorem 1
In order to analyze the dual problem (6), we first derive an ordinary differential equation, which will be
essential for the construction of the multipliers, that must be satisfied whenever the inequality constraint in
the dual problem (6) binds. Denoting the first date at which there is monitoring with positive probability
by τ̂ , we look to construct multipliers when the incentive compatibility constraint is binding after τ̂ . Instead
of directly working with the multiplier Ψ(τ), it is convenient to work with the discounted version of the
multiplier, Ψ̃(τ), that is defined as

Ψ̃(τ) = Ψ(0) +

∫ τ

0

e(r+λ)sdΨ(s).

Clearly, the multiplier Ψ(τ) is nondecreasing if and only if Ψ̃(τ) is non-decreasing. In Lemma 1 we show
that in any interval over which the constraint in the dual problem binds, the Lagrange multipliers solve the
following differential equation

Ψ̃′(τ) =
1

1− q

(
(r + λ)Ψ̃(τ)− h(τ)

)
.

In the analysis of the principal’s problem, we need to distinguish between several cases. First, we consider
the most interesting case in which the incentive compatibility constraint is binding and the optimal policy
is random. Second, we consider the case in which V (τ) attains an interior maximum at τ̂∗ < τbind. so
the incentive compatibility constraint is slack. Finally, we consider the corner case in which the incentive
compatibility constraint is binding and the optimal policy is deterministic with τ̂∗ = τbind.

Binding IC constraint with Random Inspections Suppose that under the optimal policy, in-
centive compatibility constraint binds at time 0 and at all times τ > τ̂∗; and it is slack in between. Since
F (τ) is constant on [0, τ̂∗), the inequality constraint in the dual problem (6) does not need to bind, and we
only need to verify that the first constraint in the dual problem is not violated on [0, τ̂∗). On the other hand,
because F (τ) is strictly increasing on [τ̂∗,∞), the first inequality constraint in (6) must bind on [τ̂∗,∞). In
particular, if we set Ψ̃(τ) to be constant on [0, τ̂∗), then we find that at the date of the atom

e(r+λ)τ̂∗
V (τ̂∗)− e(r+λ)τ̂∗

η + Ψ̃(τ̂∗)− Ψ̃(0)− q

∫ τ̂∗

0

e(r+λ)(τ̂−s)dΨ̃(s) =

e(r+λ)τ̂∗
V (τ̂)− e(r+λ)τ̂∗

η + (1− q)(Ψ̃(τ̂∗)− Ψ̃(0)) = 0,

and from this equation we can conclude that

η = e−(r+λ)τ̂∗
(1− q)

(
Ψ̃(τ̂)− Ψ̃(0)

)
+ V (τ̂∗). (B.1)

The verification argument requires that the value of the dual, which is given by the multiplier η, is equal to
the value of the primal given the policy F (τ) in Theorem 1. Thus, the multipliers η must be equal to

η =

(
e(r+λ)τ̂∗ − 1

1− q

)
qV (τ̂∗) +

(
1− e(r+λ)τ̂∗

q

1− q

)∫ ∞

τ̂∗
m∗e−m∗(τ−τ̂∗)V (τ)dτ. (B.2)

If we substitute the expression for η in equation (B.1), which comes from feasibility conditions for the dual,
into the value of the dual problem in equation (B.2), we get an expression for the change of the multiplier
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Ψ̃(τ) at time τ̂∗ given by Ψ̃(τ̂∗)− Ψ̃(0):

Ψ̃(τ̂∗)− Ψ̃(0) =
e(r+λ)τ̂∗

1− q

(
1− e(r+λ)τ̂∗

q
)
e−(r+λ)τ̂∗ h(τ̂∗)

r + λ
, (B.3)

where we have substituted the first order condition for τ̂∗ in equation (8). Notice that the cumulative
multiplier Ψ̃(τ) jumps at the time τ̂∗ when the incentive compatibility starts to bind. For τ ≥ τ̂∗, we
construct the multipliers using the solution to the ODE in equation (B.13) with the transversality condition
limτ→∞ e−ρτ Ψ̃(τ) = 0. From here we get that the Lagrange multiplier Ψ̃(τ) is characterized by the solution
to the ordinary differential equation on (τ̂∗,∞) together with the jump in the multiplier at time τ̂∗ in
equation (B.3), so the Lagrange multiplier is given by

Ψ̃(τ) =


(
e(r+λ)τ̂∗ − 1

) q

1−q
h(τ̂∗)
r+λ if τ ∈ [0, τ̂∗)

1
1−q

∫∞
τ

e−ρ(s−τ)h(s)ds if τ ∈ [τ̂∗,∞).
(B.4)

The only remaining step in the construction of the multipliers is to verify that Ψ̃(τ) in equation (B.4) is
nondecreasing. It can be easily verified that Ψ̃′(τ̂∗) = 0, which means that Ψ′(τ) satisfies the following ODE

Ψ̃′′(τ) =
1

1− q

(
(r + λ)Ψ̃′(τ)− h′(τ)

)
, Ψ̃′(τ̂∗) = 0, (B.5)

where h′(τ̂∗) < 0.32 We show in the appendix (Lemma 3) that if the first order condition in equation (8) is
satisfied, then the solution to the ordinary differential equation (B.5) is non-negative. Moreover, the jump
in Ψ̃(τ) at time τ̂∗ given in equation (B.3) is positive. Thus, we conclude the multiplier Ψ̃(τ) in equation
(B.4) is non-decreasing.

In sum, the multipliers (η, Ψ̃) described by equations (B.2) and (B.4), are dual feasible with a value of
the dual problem that equals the expected payoff of the policy in Theorem 1. Thus, F ∗

θ (τ) is optimal by
weak duality.

The verification argument in the case in which τ̂∗ = 0 is very similar. If

h(0) ≤
∫ ∞

0

ρe−ρsh(s)ds, (B.6)

then, by Lemma 4, we have that that for all τ ≥ 0

h(τ) <

∫ ∞

τ

ρe−ρ(s−τ)h(s)ds, (B.7)

and we can construct the multipliers in the same way as we did before on the interval [τ̂∗,∞). In particular,
32By Ψ̃′(τ̂∗) we mean the right derivative of Ψ̃(τ) at τ̂∗ as Ψ̃(τ̂∗) is discontinuous at this point.
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the multiplier Ψ̃(τ) is given by33

Ψ̃(τ) =
1

1− q

∫ ∞

τ

e−ρ(s−τ)h(s)ds (B.8)

η =

∫ ∞

0

m∗e−m∗τV (τ)dτ,

so the value of the dual corresponds to the expected payoff of the monitoring policy F ∗
θ (τ) = 1− e−m∗τ .

Slack IC constraint We consider the case in which V (τ) has a maximum on τ̂ ∈ [0, τbind). In this case,
monitoring is deterministic and τ̂ < τbind. The IC constraint is slack so we can set Ψ(0) = 0 and η = V (τ̂)

we get that the value of the objective function in the dual problem equals V (τ̂). Because V (τ̂) > V (τ) for
all τ < τ̂ , all the constraint in the dual problem are satisfied for τ < τ̂ . For τ > τ̂ we need to consider two
cases: (1) τ̂ it is strictly positive and (2) τ̂ = 0.

Case 1 If τ̂ is strictly positive, then V ′(τ̂) = 0 and V ′′(τ̂) < 0, which means that h(τ̂) = 0 and h′(τ̂) < 0.
Because h(τ) is quasi-convex, there is at most one local maximum. If τ ′′ > 0 is another local maximum,
then there must be a local minimum τ̂ < τ ′′ < τ ′. Hence, at τ ′ we have h(τ ′′) = 0 and h′(τ ′′) > 0. However,
Lemma 2 implies that h′(τ ′) > 0, which means that τ ′ cannot be another local maximum.

By the previous argument, there cannot be an interior minimum before τ̂ . This means that V (τ) must
be increasing for all τ < τ̂ . Given that there is at most one interior local maximum, the global maximum of
V (τ) must belong to {τ̂ ,∞}.

1. If limτ→∞ V (τ) ≤ V (τ̂), we can set Ψ̃(τ) = 0 and all the constrains are satisfied as V (τ)− V (τ̂) ≤ 0

for all τ ≥ 0.

2. If limτ→∞ V (τ) > V (τ̂). Then the global maximum is infinity. In this case, we set Ψ̃(τ) = 0 on [0, τ̂ ]

and use equation (B.13) to construct the multipliers for τ ≥ τ̂ , in particular

Ψ̃(τ) = eρ(τ−τ̂)Ψ̃(τ̂)− 1

1− q

∫ τ

τ̂

eρ(τ−s)h(s)ds

= − 1

1− q

∫ τ

τ̂

eρ(τ−s)h(s)ds.

Because τ̂ > 0 we have that h(τ̂) = 0 so Ψ̃′(τ̂) = 0 and Ψ̃′′(τ̂) = −h′(τ̂)/(1− q) > 0, so Ψ̃′(τ) > 0 on
(τ̂ , τ̂ + ϵ). If τ̂ = 0, then Ψ̃′(τ̂) = Ψ̃′(0) = −h(0)/(1− q) > 0.
We need to verify that Ψ̃(τ) is non-decreasing. Looking for a contradiction, suppose that Ψ̃(τ) is
decreasing at some point and let τ † = inf{τ > τ̂ : Ψ̃′(τ) < 0}. Because Ψ̃(τ̂) = 0 and Ψ̃′(τ)

33Because in this case we are assuming that V (τ) has no maximum on [0, τbind), it must be that V ′(0) = h(0) ≥ 0.
Hence, inequality (B.6) implies

1

1− q

∫ ∞

0

e−ρsh(s)ds ≥ 0.

Differentiating equation (B.8) and using inequality (B.7) we get

Ψ̃′(τ) = ρΨ̃(τ)− h(τ)

1− q
=

1

1− q

∫ ∞

τ

ρe−ρ(s−τ)h(s)ds− h(τ)

1− q
> 0,

which means that Ψ̃(τ) is nondecreasing, and because Ψ̃(0) ≥ 0 we get that Ψ̃(τ) is nonnegative.
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is nondecreasing on (τ̂ , τ †) and strictly increasing in some subset, we have that Ψ̃(τ †) > 0. The
derivative of Ψ̃(τ) is

Ψ̃′(τ) = − 1

1− q

(∫ τ

τ̂

ρeρ(τ−s)h(s)ds+ h(τ)

)
,

which means that at time τ † ∫ τ†

τ̂

ρeρ(τ
†−s)h(s)ds+ h(τ †) = 0

If τ̂ > 0, then h(τ̂) = 0, so, because h(τ) is quasi-convex, we have

0 =

∫ τ†

τ̂

ρeρ(τ
†−s)h(s)ds+ h(τ †) ≥ h(τ †) + max{h(τ̂), h(τ †)}

∫ τ†

τ̂

ρeρ(τ
†−s)ds

= h(τ †) + max{h(τ̂), h(τ †)} = h(τ †) + max{0, h(τ †)}.

However, Ψ̃′(τ †) = 0 ⇒ h(τ †) = (r + λ)Ψ(τ †) > 0, which yields a contradiction.

Case 2 If τ̂ = 0, and h(τ) ≤ 0 for all τ ≥ 0 then τ̂ = 0 is a global maximum and there is nothing to prove.
So, suppose that h(τ) > 0 for some τ . Let

Ψ(0) = max

{
0,

1

1− q

∫ ∞

0

e−ρsh(s)ds

}
,

and construct the multipliers using (B.13) with initial the condition Ψ(0) defined above. By the comparison
principle for ODEs the solution to (B.13) is

Ψ̃(τ) = max

{
− 1

1− q

∫ τ

τ ′
eρ(τ−s)h(s)ds,

1

1− q

∫ ∞

τ

e−ρ(s−τ)h(s)ds

}
.

Because Ψ̃′(τ) is increasing in Ψ̃(τ), we also have by the comparison principle applied to (B.5) that

Ψ̃′(τ) = max

{
− ρ

1− q
eρτh(0)− 1

1− q

(∫ τ

0

ρeρ(τ−s)h′(s)ds+ h(τ)

)
,

1

1− q

∫ ∞

τ

e−ρ(s−τ)h′(s)ds

}
Let τ ′ = inf{τ ≥ 0 : h(τ) > 0}. At time τ ′, h(τ) is crossing zero from below, which means that h′(τ ′) > 0,
so Lemma 2 implies that h′(τ) > 0 and h(τ) > 0 for all τ > τ ′, which means that

Ψ̃′(τ) ≥ 1

1− q

∫ ∞

τ

e−ρ(s−τ)h′(s)ds ≥ 0.

On the other hand, for all τ < τ ′ we have that h(τ) < 0 and

Ψ̃(τ) ≥ − 1

1− q

∫ τ

τ ′
eρ(τ−s)h(s)ds ≥ 0,

so
Ψ̃′(τ) =

1

1− q

(
(r + λ)Ψ̃(τ)− h(τ)

)
> 0.

We conclude that Ψ̃(τ) is nonnegative and nondecreasing.
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Binding IC constraint with Deterministic Inspection From now on, we can focus on the more
interesting case in which V (τ) does not have a maximum on [0, τbind) so the IC constraint is binding. We
need to consider two cases depending if h(τbind) −

∫∞
τbind ρe

−ρ(s−τ)h(s)ds is negative or not. We already
presented in the main text the case in which

h(τbind) <

∫ ∞

τbind
ρe−ρ(s−τbind)h(s)ds, (B.9)

so it is only left to consider the case in which the previous condition is not satisfied so there is an atom at
τbind. Thus, consider the case in which

h(τbind) ≥
∫ ∞

τbind
ρe−ρ(s−τbind)h(s)ds (B.10)

Suppose that the constraint Γ(τ) ≤ 0 in the dual problem is binding at τbind, then we have that

e(r+λ)τbind
V (τbind)− e(r+λ)τbind

η = 0,

so we immediately get that
η = V (τbind). (B.11)

The constraint Γ(τ) ≤ 0 has to be satisfy for all τ < τbind. Setting Ψ(τ) to be constant on [0, τbind], the
previous condition reduces to Γ(τ) = e(r+λ)τ

(
V (τ)− V (τbind)

)
≤ 0, which holds because we are considering

the case in which V (τ) does not have an interior maximum on [0, τbind). The next step is to construct the
multipliers for τ > τbind. We set Ψ̃(τ) = h(τbind)

r+λ for all τ ∈ [0, τbind] and construct the multipliers for
τ > τbind using the ODE in equation (B.13) with the appropriate initial condition:

Ψ̃′(τ) =
1

1− q

(
(r + λ)Ψ̃(τ)− h(τ)

)
, Ψ̃(τbind) =

h(τbind)

r + λ
. (B.12)

Hence, we have that

Ψ̃(τ) =
1

r + λ
eρ(τ−τbind)h(τbind)− 1

1− q

∫ τ

τbind
eρ(τ−s)h(s)ds

=
1

r + λ
eρ(τ−τbind)

[
h(τbind)− r + λ

1− q
e−ρ(τ−τbind)

∫ τ

τbind
eρ(τ−s)h(s)ds

]
=

1

r + λ
eρ(τ−τbind)

[
h(τbind)−

∫ τ

τbind
ρe−ρ(s−τbind)h(s)ds

]
,

where ρ ≡ (r + λ)/(1− q). The second derivative is given by

Ψ̃′′(τ) =
1

1− q

(
(r + λ)Ψ̃′(τ)− h′(τ)

)
=

1

1− q

(
(r + λ)Ψ̃′(τ)− h′(τ)

)
.
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If inequality (B.10) is satisfied, then limτ→∞ Ψ̃(τ) ≥ 0. Substituting Ψ̃(τbind) in (B.12) we get that
Ψ̃′(τbind) = 0 so the second derivative satisfies

Ψ̃′′(τ) =
1

1− q

(
(r + λ)Ψ̃′(τ)− h′(τ)

)
, Ψ̃′(τbind) = 0,

where h′(τbind) < 0, so it follows from Lemma 3 that Ψ̃′(τ) ≥ 0.

B.1 Proof of Theorem 1: Technical Lemmas
In this section, we prove a series of lemmas required for the construction of the Lagrange multipliers in the
analysis of the dual problem.

Lemma 1. Let h(τ) ≡ e(r+λ)τV ′(τ). Suppose that there is τ̂ ≥ 0 such that

h(τ)− e(r+λ)τη +

∫ τ

0

(
1− qe(r+λ)(τ−s)

)
dΨ̃(s) = 0, ∀τ ≥ τ̂ ,

then on (τ̂ ,∞) the Lagrange multiplier Ψ̃(τ) must satisfy the following differential equation

Ψ̃′(τ) =
1

1− q

(
(r + λ)Ψ̃(τ)− h(τ)

)
. (B.13)

Proof. Let’s define

Γ(τ) ≡ e(r+λ)τV (τ)− e(r+λ)τη +

∫ τ

0

(
e(r+λ)s − qe(r+λ)τ

)
dΨ(s),

which corresponds to the left hand side of the constraint in the dual problem multiplied by e(r+λ)τ . By
definition, the multipliers (η,Ψ) are dual feasible if and only if Γ(τ) ≤ 0. If we write Γ(τ) in terms of the
multiplier Ψ̃(τ) we get

Γ(τ) = e(r+λ)τV (τ)− e(r+λ)τη +

∫ τ

0

(
1− qe(r+λ)(τ−s)

)
dΨ̃(s).

At any point in which Ψ̃(τ) is differentiable, we have

Γ′(τ) = e(r+λ)τV ′(τ) +
(
1− q

)
Ψ̃′(τ) + (r + λ)

(
e(r+λ)τ (V (τ)− η)− q

∫ τ

0

e(r+λ)(τ−s)dΨ̃(s)

)
,

which can be written as

Γ′(τ) = e(r+λ)τV ′(τ) +
(
1− q

)
Ψ̃′(τ) + (r + λ)

(
Γ(τ)− Ψ̃(τ)

)
. (B.14)

From here we get that if there is τ̂ such that Γ(τ) = 0 for all τ > τ̂ , then it must be the case that Ψ̃(τ)

satisfies the following differential equation

Ψ̃′(τ) =
1

1− q

(
(r + λ)Ψ̃(τ)− h(τ)

)
. (B.15)

where h(τ) is defined as
h(τ) ≡ e(r+λ)τV ′(τ), (B.16)
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Lemma 2. h (τ) is quasi-convex, and strictly convex when increasing.

Proof. Recall
h (τ) ≡ e(r+λ)τV ′(τ) = eλτ

(
u(xθ

τ )− rM(U, xθ
τ ) + ẋθ

τ (UH − UL)
)
.

We have:

h′ (τ) = λh (τ) + eλτ
(
ẋθ
τ

[
u′(xθ

τ )− (r + λ)(UH − UL)
])

h′′ (τ) = λh′ (τ) + λeλτ
(
ẋθ
τ

[
u′(xθ

τ )− (r + λ)(UH − UL)
])

+ eλτ
(
−λẋθ

τ

[
u′(xθ

τ )− (r + λ)(UH − UL)
])

+ eλτ
(
ẋθ
τ

)2
u′′(xθ

τ )

= λh′ (τ) + eλτ
(
ẋθ
τ

)2
u′′(xθ

τ )

So when h′ (τ) = 0 then h′′ (τ) > 0. So whenever the derivative of h becomes zero, h is strictly convex
locally. So h is quasi-convex: h′ (τ) changes sign only at most once from negative to positive.

Lemma 3. Suppose that h′(τ̂) ≤ 0, then the solution to the ODE

f ′(τ) =
1

1− q
((r + λ)f(τ)− h′(τ))

with initial condition f(τ̂) = 0 is non-negative on (τ̂ ,∞) if and only if

h (τ̂) ≥
∫ ∞

τ̂

ρe−ρ(s−τ̂)h(s)ds.

Proof. The solution to the ODE is

f(τ) = − 1

1− q

∫ τ

τ̂

e
r+λ
1−q (τ−s)

h′(s)ds.

We want to show that for τ > τ̂ ∫ τ

τ̂

e−ρsh′(s)ds ≤ 0.

for which, given the quasi-convexity of h, it is necessary and sufficient to show that

Z ≡
∫ ∞

τ̂

e−ρsh′(s)ds ≤ 0.

Integrating by parts we get∫ ∞

τ̂

e−ρsh′(s)ds = lim
τ→∞

h (τ) e−ρτ − e−ρτ̂h (τ̂) +

∫ ∞

τ̂

ρe−ρsh(s)ds

Since
h (τ) e−ρτ = e(r+λ−ρ)τV ′(τ) = e(λ−ρ)τ

(
u(xθ

τ )− rM(U, xθ
τ ) + ẋθ

τ (UH − UL)
)

we have that
lim
τ→∞

h (τ) e−ρτ = 0
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Therefore

Z = −e−ρτ̂h (τ̂) +

∫ ∞

τ̂

ρe−ρsh(s)ds

= e−ρτ̂

(∫ ∞

τ̂

ρe−ρ(s−τ̂)h(s)ds− h (τ̂)

)
Therefore f (t) is weakly positive for all t ≥ τ̂ if and only if∫ ∞

τ̂

ρe−ρ(s−τ̂)h(s)ds ≤ h (τ̂)

Lemma 4. The first order condition

V ′(τ̂) =
(r + λ)

1− q

(∫ ∞

τ̂

me−m(τ−τ̂)V (τ)dτ − V (τ̂)

)
is equivalent to the condition

h(τ̂) =

∫ ∞

τ̂

ρe−ρ(τ−τ̂)h(τ)dτ.

Moreover,

1. If h′(τ) < 0 on (0,∞) then
h(τ) >

∫ ∞

τ

ρe−ρ(s−τ)h(s)ds

for all τ ≥ 0.

2. If
h(τ̃) ≤

∫ ∞

τ̃

ρe−ρ(s−τ)h(s)ds

then
h(τ) <

∫ ∞

τ

ρe−ρ(s−τ)h(s)ds

for all τ > τ̃ .

3. Suppose that h′(0) < 0 and
h(0) >

∫ ∞

0

ρe−ρsh(s)ds,

and let let τ̃ = inf{τ : h′(τ̃) ≥ 0}. Then, there is a unique τ̂ < τ̃ satisfying the first order condition
such that

h(τ) ≥
∫ ∞

τ

ρe−ρ(s−τ)h(s)ds, ∀τ ∈ [0, τ̂)

h(τ) ≤
∫ ∞

τ

ρe−ρ(s−τ)h(s)ds, ∀τ ∈ (τ̂ , τ̃ ].

Proof. Letting
ρ =

r + λ

1− q
= r + λ+m
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we can write the first order condition as

e−ρτ̂h(τ̂) =
(r + λ)

1− q

(∫ ∞

τ̂

me−mτV (τ)dτ − e−mτ̂V (τ̂)

)
Using integration by parts ∫ ∞

τ̂

me−mτV (τ)dτ = e−mτ̂V (τ) +

∫ ∞

τ̂

e−mτV ′(τ)dτ

which yield
e−ρτ̂h(τ̂) =

(r + λ)

1− q

∫ ∞

τ̂

e−mτV ′(τ)dτ.

Part 1: If h′(τ) ≤ 0 is negative for all τ , then it is immediate that

h(τ) >

∫ ∞

τ

ρe−ρ(s−τ)h(s).

Part 2: We consider two cases, h′(τ̃) ≥ 0 and h′(τ̃) < 0. In the first case, because h(τ) is quasi-convex
we have that h(τ) is increasing on (τ̃ ,∞), which immediately implies that

h(τ) <

∫ ∞

τ

ρe−ρ(s−τ)h(s).

In the second case, let’s define
H(τ) ≡ h(τ)−

∫ ∞

τ

ρe−ρ(s−τ)h(s)ds,

which satisfies the following ODE.
H ′(τ) = ρH(τ) + h′(τ). (B.17)

Suppose by contradiction, that there is some τ ′ > τ̃ such that H(τ ′) > 0, and let τ † = inf{τ ∈ (τ̃ , τ ′) :

H(τ) > 0}. H(τ †) = 0 because H(τ) is continuous, and h′(τ †) < 0 as h′(τ) ≥ 0 implies H(τ) > 0. But then,
equation (B.17) implies that H ′(τ †) < 0, which contradicts H(τ † + ϵ) > 0 for a sufficiently small ϵ. Hence,
it must be the case that H(τ) < 0 for all τ > τ̃ .

Part 3: Suppose that H(0) > 0 and let τ̃ = inf{τ : h′(τ) ≥ 0}, which means that H(τ̃) > 0. By continuity
there is τ̂ ∈ (0, τ̃) such that H(τ̂) = 0. Moreover, because h′(τ) < 0 for all τ < τ̃ , equation (B.17) implies
that H(τ) > 0 on [0, τ̂) and H(τ) < 0 on (τ̂ , τ̃ ].

C Proof Brownian Linear-Quadratic Model

Proof of Proposition 6

Proof. We show that the objective function in the model with linear quadratic preferences and Brownian
shocks can be reduced to the objective function in the model with binary quality and linear quadratic u(x).
The objective function in the case linear quadratic case is u(xt,Σt) = xt − γΣt where

Σt =
σ2

2λ

(
1− e−2λt

)
.
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On the other hand, if we set ā = 1/2 in the binary case we get that

x2
t = xt −

1

4
(1− e−2λt).

It follows that we can normalize the cost of monitoring and reduce the optimization problem in the linear
quadratic case with Brownian quality shocks to the same optimization problem as the one in the binary case
with ā = 1/2 and linear quadratic utility function.

D Analysis using Optimal Control
In this section of the appendix, we sketch an alternative proof of Theorem 1 that uses optimal control
techniques instead of the weak duality approach. The main advantage of this approach is that it does not
require a guess of the shape of the optimal monitoring policy in advance. To simplify the number of cases to
consider, we assume here that u(x) is strictly convex and that the solution of the relaxed problem (ignoring
incentive compatibility constraints) is not incentive compatible. Proofs of all lemmas are relegated to the
online appendix.

This proof is based on the analysis of necessary conditions that any optimal policy must satisfy. Therefore,
the first step in the analysis is to show that an optimal policy actually exists. The following lemma establishes
that a fixed point in (3) exists , is unique, and that the supremum is attained.

Lemma 5 (Existence). Suppose the max in (3) is replaced by a sup. Then there exists a unique fixed point
G θ(U) = U, θ ∈ {L,H}. Furthermore, for any continuation payoff U, there exists a monitoring policy F ∗

solving the maximization problem in (3) (so the sup is attained).

The next step is to reformulate the problem as an optimal control problem with state constraints. For
this, we define the state variable

qτ ≡ E
[
e−(r+λ)(τn+1−τ)

∣∣τn+1 ≥ τ, θ0

]
,

where the expectation is taken over the next monitoring time, τn+1, conditional on reaching time τ . That
is, qτ , represents the expected discounted time until the next review, where the effective discount rate
incorporates the depreciation rate λ. The incentive compatibility constraint in Proposition 1 becomes qτ ≥ q.

We can derive the law of motion of (qτ )τ≥0 to use it as a state variable in the principal’s optimization
problem. It is convenient to express the optimization problem in terms of the hazard measure M : R+ ∪
{∞} → R+ ∪ {∞} defined by 1 − F (τ) = e−Mτ . Mτ is a non-decreasing function and by the Lebesgue
decomposition theorem, it can be decomposed into its continuous and its discrete part34

Mτ = M c
τ +Md

τ .

34With some abuse of notation, we are allowing Mτ = ∞ to incorporate the event that there is monitoring with
probability 1 at time τ . Technically, this means that M is not a σ-finite measure so the Lebesgue decomposition
does not follow directly. The definition 1− F (τ) = e−Mτ is convenient in terms of notation, and the decomposition
of Mτ is valid for τ < τ̄ = inf{τ > 0 : F (τ) = 1}. Thus, the definition 1 − F (τ) = e−Mτ should be interpreted as a
shorthand for

1− F (τ) =

{
e−Mc

τ
∏

0<s<τ e
−∆Md

s if τ < τ̄

0 if τ ≥ τ̄
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Thus, we can write

qτ =

∫ ∞

τ

e−(r+λ)(s−τ) dF (s)

1− F (τ−)

=

∫ ∞

τ

e−(r+λ)(s−τ)−(Ms−−Mτ )dM c(s) +
∑
s>τ

e−(r+λ)(s−τ)−(Ms−−Mτ )(1− e−∆Md
s )

With this notation, at any point of continuity of the monitoring policy we have that

dqτ = (r + λ)qτdτ − (1− qτ )dM
c
τ , (D.1)

while at any point of discontinuity we have that

qτ− = e−∆Md
τ qτ + (1− e−∆Md

τ ). (D.2)

The next lemma summarizes the recursive formulation for the incentive compatibility constraints.

Lemma 6 (Incentive Compatibility). For any monitoring policy Mτ , let τ̄ = inf{τ ∈ R+∪{∞} : F (τ) = 1}.
For any τ ∈ [0, τ̄ ], let qτ be the solution to equations (D.1) and (D.2) with terminal condition qτ̄ = 1. Full
effort is incentive compatible if and only if qτ ≥ q, for all τ ∈ [0, τ̄ ].

To formulate the principal problem as an optimal control with state constraints, we also use the principal’s
continuation value, Uτ (θ,U), as an additional state variable. To simplify notation, we simply write Uτ and
omit the dependence on (θ,U). The continuation value for the principal given a monitoring policy Mτ and
post-monitoring continuation payoffs U is

Uτ =

∫ ∞

τ

e−r(s−τ)−(Ms−−Mτ )u(xθ
s)ds+

∫ ∞

τ

e−r(s−τ)−(Ms−−Mτ )M(U, xθ
s)dM

c
s

+
∑
s>τ

e−r(s−τ)−(Ms−−Mτ )(1− e−∆Md
s )M(U, xθ

s)

At any point of continuity (of Mτ ), the continuation value satisfies the differential equation

dUτ =
(
rUτ − u(xθ

τ )
)
dτ +

(
Uτ −M(U, xθ

τ )
)
dM c

τ , (D.3)

while at any point of discontinuity, the jump in the continuation value is given by

Uτ− = (1− e−∆Md
τ )M(U, xθ

τ ) + e−∆Md
τ Uτ . (D.4)

Combining these definitions with Lemma 6 allows us to represent the optimal monitoring policy recur-
sively, with qτ and Uτ as state variables. In particular, the optimal control problem associated with (3)
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is: 

G θ(U) = maxMτ
U0

subject to
dUτ =

(
rUτ − u(xθ

τ )
)
dτ +

(
Uτ −M(U, xθ

τ )
)
dM c

τ , Uτ̄ = M(U, xθ
τ̄ )

Uτ− = (1− e−∆Md
τ )M(U, xθ

τ ) + e−∆Md
τ Uτ

dqτ = (r + λ)qτdt− (1− qτ )dM
c
τ , qτ̄ = 1

qτ− = e−∆Md
τ qτ + (1− e−∆Md

τ )

qτ ∈ [q, 1]

(D.5)

Solving this problem is challenging due to the presence of state constraints. The formal proof relies
on necessary conditions from Pontryagin’s maximum principle for a problem with state constraints (see
Hartl et al. (1995) for a survey and Seierstad and Sydsaeter (1986) for a textbook treatment). Using these
necessary conditions, we show that the optimal policy belongs to the family of distributions characterized
in Theorem 1. As we explained in the text, the fixed-point problem is then greatly simplified because the
maximization problem is reduced to a one-dimensional problem.

The analysis of the principal problem follows five steps. In the first two steps, we derive necessary
conditions that the optimal monitoring policy must satisfy. In Step 3, we show that the principal never
monitors using a positive hazard rate if the incentive compatibility constraint is slack. In Step 4, we show
that the monitoring distribution has at most one atom. In Step 5, we show that Steps 3 and 4 imply that
the optimal policy belongs to the family characterized in Theorem 1. Using dynamic programming to solve
the principal problem is difficult because it requires solving a nonlinear partial differential equation. It is
easier to analyze the problem using Pontryagin’s maximum principle as in this case we only need to analyze
incentives along the optimal path.

We start deriving some necessary conditions for optimality using Pontryagin’s maximum principle for
problems with state constraints. In order to guarantee existence, we rely on the general formulation in
Arutyunov et al. (2005) for free-time impulse control problem with state constraints that allows for general
measures. That being said, this general formulation leads to the same optimality conditions as the ones in the
standard maximum principle presented in Seierstad and Sydsaeter (1986). While the results in Arutyunov
et al. (2005) covers the case with a finite time horizon, Pereira and Silva (2011) extends the results to
consider the infinite horizon case. In addition, because we are considering distributions over the extended
real numbers, which are homeomorphic to the unit interval, it is possible to reparametrize the independent
variable and work using distributions on discounted times rather than calendar time. In general, the main
problem with an infinite horizon is to find the right transversality conditions to pin down a unique candidate
for the solution. This is not a problem in our analysis because we do not use the maximum principle to
pin down the unique solution. Instead, we use the maximum principle to identify some properties that any
candidate policy must satisfy. This allows restricting the candidate policies to a simple family of distributions.
The final solution is found maximizing over this family, which is done in equation (12). At this point, we
only need to solve a one-dimensional optimization problem to find the optimal policy.

As it is usual in optimal control problem, we have to write the Hamiltonian for the problem. The
statement of the maximum principle in Theorem 4.1 in Arutyunov et al. (2005) is quite involved, so next,
we present the subset of necessary conditions in Theorem 4.1 that we will use for our analysis. Let’s define
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the Hamiltonian H̃(τ) and the switching function S̃(τ)

H̃(τ) = ζ̃τ
(
rUτ − u(xθ

τ )
)
+ ν̃τ (r + λ)qτ (D.6a)

S̃(τ) = ζ̃τ
(
Uτ −M(U, xθ

τ )
)
− ν̃τ (1− qτ ), (D.6b)

where (ζ̃τ , ν̃τ ) are the adjoint variables.35 The Lagrange multiplier for the incentive compatibility constraint,
Φτ , is a positive nondecreasing function satisfying

Φ̃τ =

∫ τ

0

1{qu=q}dΦ̃u.

It follows from the system of Equations (4.1) in Arutyunov et al. (2005) that at an optimal solution the
adjoint variables (ζ̃τ , ν̃τ ) and Hamiltonian satisfy

ζ̃τ = ζ̃0 −
∫ τ

0

rζ̃sds−
∫ τ

0

ζ̃sdM
c
s −

∑
k

(1− e−∆Md
τk )ζ̃τk− (D.7a)

ν̃τ = ν̃0 −
∫ τ

0

(r + λ)ν̃sds−
∫ τ

0

ν̃sdM
c
s − Φ̃τ −

∑
k

(1− e−∆Md
τk )ν̃τk− (D.7b)

H̃(τ) = H̃(0)−
∫ τ

0

ζ̃su
′(xθ

s)ẋ
θ
sds−

∫ τ

0

ζ̃sẋ
θ
s(UH − UL)dM

c
s (D.7c)

−
∑
k

(1− e−∆Md
τk )ζ̃τk−ẋ

θ
τk
(UH − UL).

Equations (D.7a)-(D.7c) look quite complicated; however, they correspond to the generalized integral
representation of the ordinary differential equations for the co-state variables in traditional optimal control
theory. Because the multipliers and maximized Hamiltonian are not necessarily absolutely continuous, we
need to write the system as integral equations rather than ordinary differential equations.

The adjoint variables ζ̃t and ν̃t also have to satisfy the transversality conditions

ζ̃0 = −1

ν̃0 ≤ 0

ν̃0(q0 − q) = 0.

Finally, the optimization of the Hamiltonian requires that the following optimality and complementary
slackness conditions are satisfied:

S̃(τ) ≤ 0 (D.8a)

Mτ =

∫ τ

0

1{S(u)=0}dMu. (D.8b)

Condition (D.8a) is required for the Hamiltonian to be finite, while Condition (D.8b) states that there is
positive probability of monitoring only if S(τ) = 0. It can be noticed that condition (D.8b) also coincide with
the optimality conditions from the Hamiltonian maximization in (Seierstad and Sydsaeter, 1986, Theorem 2,
p. 332).

The adjoint variables are expressed in terms of their time 0 discounted value. As it is common in the
35S(τ) corresponds to the function Q(τ) defined in (Arutyunov et al., 2005, p. 1816), which corresponds to the

so-called switching function in linear optimal control problems.
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analysis of discounted optimal control problems, it is convenient to express the variables in terms of their
current value counterparts. Thus, we define ζτ ≡ erτ+Mτ ζ̃τ , ντ ≡ erτ+Mτ ν̃τ , H(τ) ≡ erτ+Mτ H̃(τ), and
S(τ) ≡ erτ+Mτ S̃(τ). It follows that we can write the current value versions of H̃ and S̃ as

H(τ) = ζτ
(
rUτ − u(xθ

τ )
)
+ ντ (r + λ)qτ (D.9a)

S(τ) = ζτ
(
Uτ −M(U, xθ

τ )
)
− ντ (1− qτ ). (D.9b)

Similarly, we can write the current value counterpart for the Lagrange multiplier, which is defined as

Φτ = Φ̃0 +

∫ τ

0

ers+MsdΦ̃s.

The previous equation can be inverted to get

Φ̃τ = Φ0 +

∫ τ

0

e−rs−MsdΦs.

Rewriting equations (D.7a)-(D.7b) we get

e−rτ−Mτ ζτ = ζ0 −
∫ τ

0

re−rs−Msζsds−
∫ τ

0

e−rs−MsζsdM
c
s −

∑
k

(1− e−∆Md
τk )e−rτk−Mτk−ζτk− (D.10a)

e−rτ−Mτ ντ = ν0 −
∫ τ

0

(r + λ)e−rs−Msνsds−
∫ τ

0

e−rs−MsνsdM
c
s − Φ0 −

∫ τ

0

e−rs−MsdΦs (D.10b)

−
∑
k

(1− e−∆Md
τk )e−rτk−Mτk−ντk−.

Equation (D.10a) implies that ζτ must be constant, and together with the transversality condition we get
that ζτ = ζ0 = −1. It can be verified form equation (D.10b) that the adjoint variable ντ must satisfy

ντ = ν0 −
∫ τ

0

λνsds− Φτ . (D.11)

Equation (D.11) corresponds to the traditional differential equation for the adjoint variable (Seierstad and
Sydsaeter, 1986, Equation (91) in Theorem 2, p. 332). Next, equation (D.7c) implies that at any jump time
τk we must have

H̃(τk)− H̃(τk−) = −(1− e−∆Md
τk )ζ̃τk−ẋ

θ
τk
(UH − UL),

which correspond to the optimality condition in (Seierstad and Sydsaeter, 1986, Note 7, p. 197). By definition
of the Hamiltonian H(τ), we have

H̃(τk)− H̃(τk−) = ζ̃τk
(
rUτk − u(xθ

τk
)
)
+ ν̃τk(r + λ)qτk − ζ̃τk−

(
rUτk− − u(xθ

τk−)
)
− ν̃τk−(r + λ)qτk−.
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Combining the previous two equation and using the definition of the current value variables we get that

(1− e−∆Md
τk )e−rτk−Mτk− ẋθ

τk
(UH − UL) = −e−rτk−Mτk

(
rUτk − u(xθ

τk
)
)
+ e−rτk−Mτk (ντk− −∆Φτk) (r + λ)qτk

+ e−rτk−Mτk−
(
rUτk− − u(xθ

τk−)
)
− e−rτk−Mτk−ντk−(r + λ)qτk−

=⇒

(1− e−∆Md
τk )e∆Md

τk ẋθ
τk
(UH − UL) = −rUτk + u(xθ

τk
) + (ντk− − Φτk)(r + λ)qτk

+ e∆Md
τk rUτk− − e∆Md

τku(xθ
τk−)− e∆Md

τk ντk−(r + λ)qτk−

=⇒

(e∆Md
τk − 1)ẋθ

τk
(UH − UL) = r(e∆Md

τkUτk− − Uτk)− u(xθ
τk
)
(
e∆Md

τk − 1
)

− ντk−(r + λ)
(
e∆Md

τk qτk− − qτk

)
−∆Φτk(r + λ)qτk . (D.12)

Substituting the expressions for the jump in Uτ and qτ , which are given by

e∆Md
τ Uτ− − Uτ = (e∆Md

τ − 1)M(U, xθ
τ )

e∆Md
τ qτ− − qτ = e∆Md

τ − 1,

we find that

(e∆Md
τk − 1)ẋθ

τk
(UH − UL) = r(e∆Md

τk − 1)M(U, xθ
τk
)− u(xθ

τk
)
(
e∆Md

τk − 1
)

− ντk−(r + λ)
(
e∆Md

τk − 1
)
−∆Φτk(r + λ)qτk .

Simplifying terms we get the following necessary condition that must be satisfied at any time τk in which
there is an atom:

rM(U, xθ
τk
) = u(xθ

τk
) + ẋθ

τk
(UH − UL) + (r + λ)ντk + (r + λ)

qτk

e∆Md
τk − 1

∆Φτk . (D.13)

We show in the proof of Lemma 8 that ∆Φτk = 0, which means that ντ is continuous. This means that
(D.13) can be simplified to

rM(U, xθ
τk
) = u(xθ

τk
) + ẋθ

τk
(UH − UL) + (r + λ)ντk .

This expression coincides with the optimality condition at free time τ̄ in Equation (4.4) in Arutyunov et al.
(2005), and this condition also coincides with the condition for free final time problems in (Seierstad and
Sydsaeter, 1986, Equation (152) in Theorem 16, p. 398).
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We can summarize the necessary condition that we use in the proof:

S(τ) = −
(
Uτ −M(U, xθ

τ )
)
− ντ (1− qτ ) ≤ 0 (D.14)

Mτ =

∫ τ

0

1{S(u)=0}dMu (D.15)

ντ = ν0 −
∫ τ

0

λνsds− Φτ (D.16)

Φτ =

∫ τ

0

1{qu=q}dΦu, dΦτ ≥ 0 (D.17)

rM(U, xθ
τk
) = u(xθ

τk
) + ẋθ

τk
(UH − UL) + (r + λ)ντk + (r + λ)

qτk

e∆Md
τk − 1

∆Φτk . (D.18)

The next step is to show that, in any optimal policy, the principal never monitors using a positive hazard
rate if the incentive compatibility constraint is slack. If the incentive compatibility constraint is binding over
a period of time, then qτ is constant and the constant monitoring rate is determined by the condition that
qτ = q. On the other hand, if the incentive compatibility constraint were slack and mτ > 0, then the
necessary condition (D.8b) would require that S(τ) = 0. In the following lemma, we show that this leads
to a contradiction due to the convexity of u(x), which means that the monitoring rate must be zero in this
case.

Lemma 7. Let M∗
τ be an optimal policy, M c∗

τ its continuous part, and B = {τ ∈ [0, τ̄∗] : qτ > q} the set of
dates at which the IC constraint is slack. Then,

∫
B
dM c∗

τ = 0.

Lemma 7 provides a partial characterization of the continuous part of the monitoring distribution.
However, we also need to take care of the atoms. Relying on the convexity of u(x) once again, we show that
Equation (D.13) satisfies a single crossing condition implying that (D.13) can hold at most at one point in
the optimal path of qτ , which means that any optimal policy can have at most one atom. Formally, we prove
the following result:

Lemma 8. Let M∗
τ be an optimal policy, Md∗

τ its discrete part. Then, there is at most one time τ̂ such that
∆Md∗

τ̂ > 0.

The final step is to verify that these results imply that any optimal policy must take the form in Theorem
1. Any policy consistent with Lemmas 7 and 8 must look as the one in Figure 3a, and the trajectory of qτ
must look like the one in Figure 3b: that is, either the incentive compatibility is binding and qτ is constant,
or qτ increases until it either (1) reaches one or (2) there is an atom and qτ jumps down to q, and the
incentive compatibility constraint is binding after that. As it is shown in Figure 3a, the monitoring policy
associated with the trajectory of qτ is such the incentive compatibility constraint is binding before time τ̃ ,
which requires a monitoring rate equal to m∗ (where m∗ is the same as in Proposition 4). After τ̃ , there
is no monitoring and the incentive compatibility constraint is slack. At time τ̂ , either there is monitoring
with probability 1, so qτ̂ = 1 and τ̂ = τ̄ , or there is an interior atom so conditional on not monitoring, the
monitoring distribution is exponential thereafter. By means of optimizing over τ̃ , for an arbitrary fixed τ̂ ,
we can show that τ̃ is either zero or infinity, which allow us to conclude that the optimal policy must take
the form in Theorem 1 and completes the proof.
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(b) Path of qτ conditional on not monitoring.

Figure 3: Cumulative density function and path of qτ implied by Lemmas 7 and 8.
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